
Parameterized verification of Broadcast networks of
Register automata

Nicolas Waldburger
joint work with Lucie Guillou and Corto Mascle

ANR PaVeDyS

January 16th, 2024

To be published at FoSSaCS’24

Nicolas Waldburger 1 / 27

1 Broadcast networks
Basic model
With registers

2 Signature BNRA
Well quasi-orders
Decidability proof

Nicolas Waldburger 2 / 27

Broadcast networks Basic model

1 Broadcast networks
Basic model
With registers

2 Signature BNRA
Well quasi-orders
Decidability proof

Nicolas Waldburger 3 / 27

Broadcast networks Basic model

Broadcast networks

rec(b)

br(b) rec(a)

br(a)

rec(b)

br(c)

Nicolas Waldburger 4 / 27

Broadcast networks Basic model

Broadcast networks

br(b)

rec(b)

rec(a)

br(a)

br(a)

rec(b)

br(c)

rec(b)

br(b) rec(b)

rec(b)

br(c)

br(c)

br(a)

rec(a)

rec(a)

br(a)

rec(b)

rec(a)

rec(a)

br(b)

br(b)

rec(b)

br(c)

Nicolas Waldburger 5 / 27

Broadcast networks Basic model

Broadcast networks

br(b)

rec(b)

rec(a)

br(a)

br(a)

rec(b)

br(c)

rec(b)

br(b) rec(b)

rec(b)

br(c)

br(c)

br(a)

rec(a)

rec(a)

br(a)

rec(b)

rec(a)

rec(a)

br(b)

br(b)

rec(b)

br(c)

Nicolas Waldburger 5 / 27

Broadcast networks Basic model

Broadcast networks

br(b)

rec(b)

rec(a)

br(a)

br(a)

rec(b)

br(c)

rec(b)

br(b)

rec(b)

rec(b)

br(c)

br(c)

br(a)

rec(a)

rec(a)

br(a)

rec(b)

rec(a)

rec(a)

br(b)

br(b) rec(b)

br(c)

Nicolas Waldburger 5 / 27

Broadcast networks Basic model

Broadcast networks

br(b)

rec(b)

rec(a)

br(a)

br(a)

rec(b)

br(c)

rec(b)

br(b) rec(b)

rec(b)

br(c)

br(c)
br(a)

rec(a)

rec(a)

br(a)

rec(b)

rec(a)

rec(a)

br(b)

br(b)

rec(b)

br(c)

Nicolas Waldburger 5 / 27

Broadcast networks Basic model

Broadcast Networks

Definition1

(Reconfigurable) Broadcast Network = (Q,M,∆, q0) with
∆ ⊆ Q × {br(m), rec(m) | m ∈ M} × Q.

▶ Arbitrarily many agents at the start

▶ One step = an agent broadcasts a message m,
some (arbitrary subset of) other agents receive it.

Problems

Cover: Is there a run in which an agent reaches qf ?
Target: Is there a run in which all agents reach qf simultaneously?

Both problems are decidable in PTIME12.

1Delzanno, Sangnier, Zavattaro, CONCUR’10
2Fournier, PhD thesis, 2015

Nicolas Waldburger 6 / 27

Broadcast networks Basic model

Broadcast Networks

Definition1

(Reconfigurable) Broadcast Network = (Q,M,∆, q0) with
∆ ⊆ Q × {br(m), rec(m) | m ∈ M} × Q.

▶ Arbitrarily many agents at the start

▶ One step = an agent broadcasts a message m,
some (arbitrary subset of) other agents receive it.

Problems

Cover: Is there a run in which an agent reaches qf ?
Target: Is there a run in which all agents reach qf simultaneously?

Both problems are decidable in PTIME12.

1Delzanno, Sangnier, Zavattaro, CONCUR’10
2Fournier, PhD thesis, 2015

Nicolas Waldburger 6 / 27

Broadcast networks Basic model

Broadcast Networks

Definition1

(Reconfigurable) Broadcast Network = (Q,M,∆, q0) with
∆ ⊆ Q × {br(m), rec(m) | m ∈ M} × Q.

▶ Arbitrarily many agents at the start

▶ One step = an agent broadcasts a message m,
some (arbitrary subset of) other agents receive it.

Problems

Cover: Is there a run in which an agent reaches qf ?
Target: Is there a run in which all agents reach qf simultaneously?

Both problems are decidable in PTIME12.

1Delzanno, Sangnier, Zavattaro, CONCUR’10
2Fournier, PhD thesis, 2015

Nicolas Waldburger 6 / 27

Broadcast networks With registers

1 Broadcast networks
Basic model
With registers

2 Signature BNRA
Well quasi-orders
Decidability proof

Nicolas Waldburger 7 / 27

Broadcast networks With registers

Registers

Each agent now has local registers□1, . . . ,□r , containing values in N.

rec(b,=□1)

rec(a, ↓□2)

br(a,□1)

rec(b,=□2)

rec(c , ̸=□2)

Nicolas Waldburger 8 / 27

Broadcast networks With registers

Registers

Each agent now has local registers□1, . . . ,□r , containing values in N.

rec(b,=□1)

rec(a, ↓□2)

br(a,□1)

rec(b,=□2)

rec(c , ̸=□2)

Nicolas Waldburger 8 / 27

Broadcast networks With registers

Registers

Each agent now has local registers□1, . . . ,□r , containing values in N.

rec(b,=□1)

rec(a, ↓□2)

br(a,□1)

rec(b,=□2)

rec(c , ̸=□2)

Nicolas Waldburger 8 / 27

Broadcast networks With registers

Registers

Each agent now has local registers□1, . . . ,□r , containing values in N.

rec(b,=□1)

rec(a, ↓□2)

br(a,□1)

rec(b,=□2)

rec(c , ̸=□2)

Nicolas Waldburger 8 / 27

Broadcast networks With registers

Registers

Each agent now has local registers□1, . . . ,□r , containing values in N.

rec(b,=□1)

rec(a, ↓□2)

br(a,□1)

rec(b,=□2)

rec(c , ̸=□2)

Nicolas Waldburger 8 / 27

Broadcast networks With registers

Broadcast Networks of Register Automata (BNRA)3

Each agent now has local registers□1, . . . ,□r , containing values in N.

Initially, all registers of all agents contain distinct values.

Messages also contain values: (m, v) ∈ M × N. An agent can:

▶ Broadcast a message with a register value br(m, ri)

▶ Receive messages rec(m, ri , op), with op either

store the value ↓,
test it for equality =, ̸=
or do nothing ∗.

Remark: the model where one allows to send two messages per broadcast
is undecidable3.

3Delzanno, Sangnier, Traverso, RP’13
Nicolas Waldburger 9 / 27

Broadcast networks With registers

Broadcast Networks of Register Automata (BNRA)3

Each agent now has local registers□1, . . . ,□r , containing values in N.
Initially, all registers of all agents contain distinct values.

Messages also contain values: (m, v) ∈ M × N. An agent can:

▶ Broadcast a message with a register value br(m, ri)

▶ Receive messages rec(m, ri , op), with op either

store the value ↓,
test it for equality =, ̸=
or do nothing ∗.

Remark: the model where one allows to send two messages per broadcast
is undecidable3.

3Delzanno, Sangnier, Traverso, RP’13
Nicolas Waldburger 9 / 27

Broadcast networks With registers

Broadcast Networks of Register Automata (BNRA)3

Each agent now has local registers□1, . . . ,□r , containing values in N.
Initially, all registers of all agents contain distinct values.

Messages also contain values: (m, v) ∈ M × N. An agent can:

▶ Broadcast a message with a register value br(m, ri)

▶ Receive messages rec(m, ri , op), with op either

store the value ↓,
test it for equality =, ̸=
or do nothing ∗.

Remark: the model where one allows to send two messages per broadcast
is undecidable3.

3Delzanno, Sangnier, Traverso, RP’13
Nicolas Waldburger 9 / 27

Broadcast networks With registers

Broadcast Networks of Register Automata (BNRA)3

Each agent now has local registers□1, . . . ,□r , containing values in N.
Initially, all registers of all agents contain distinct values.

Messages also contain values: (m, v) ∈ M × N. An agent can:

▶ Broadcast a message with a register value br(m, ri)

▶ Receive messages rec(m, ri , op), with op either

store the value ↓,
test it for equality =, ̸=
or do nothing ∗.

Remark: the model where one allows to send two messages per broadcast
is undecidable3.

3Delzanno, Sangnier, Traverso, RP’13
Nicolas Waldburger 9 / 27

Broadcast networks With registers

Broadcast Networks of Register Automata (BNRA)3

Each agent now has local registers□1, . . . ,□r , containing values in N.
Initially, all registers of all agents contain distinct values.

Messages also contain values: (m, v) ∈ M × N. An agent can:

▶ Broadcast a message with a register value br(m, ri)

▶ Receive messages rec(m, ri , op), with op either

store the value ↓,
test it for equality =, ̸=
or do nothing ∗.

Remark: the model where one allows to send two messages per broadcast
is undecidable3.

3Delzanno, Sangnier, Traverso, RP’13
Nicolas Waldburger 9 / 27

Broadcast networks With registers

Things we can do

We can check that a sequence of messages all come from the same agent.

rec(a,=□2)

rec(a, ↓□2)

rec(b,=□2)

rec(c ,=□2)

Nicolas Waldburger 10 / 27

Broadcast networks With registers

Things we can do

We can check that a sequence of messages we sent was received.

br(a,□1) br(b,□1) rec(ok,=□1)

rec(b,=□1) br(ok,□1)
rec(a, ↓□1)

Nicolas Waldburger 11 / 27

Broadcast networks With registers

Parameterized verification principles

▶ Unlimited supply of agents.

▶ For Cover, we can add as many agents as we need at no cost.

Copycat principle

Given a run ρ, we can construct a run made of many copies of ρ running
in parallel.

Main theorem

Cover is decidable for BNRA.

Nicolas Waldburger 12 / 27

Broadcast networks With registers

Parameterized verification principles

▶ Unlimited supply of agents.

▶ For Cover, we can add as many agents as we need at no cost.

Copycat principle

Given a run ρ, we can construct a run made of many copies of ρ running
in parallel.

Main theorem

Cover is decidable for BNRA.

Nicolas Waldburger 12 / 27

Signature BNRA

1 Broadcast networks
Basic model
With registers

2 Signature BNRA
Well quasi-orders
Decidability proof

Nicolas Waldburger 13 / 27

Signature BNRA

Signature BNRA

Signature BNRA

An agent never modifies its first register, and only broadcasts with the
value of its first signature.
Other registers are used to store and compare values received.

The first register acts as an identity with which agents sign their messages.
br

rec
↓,=, ̸=

· · ·

Messages received with the same value come from the same agent.

Nicolas Waldburger 14 / 27

Signature BNRA

Signature BNRA

Signature BNRA

An agent never modifies its first register, and only broadcasts with the
value of its first signature.
Other registers are used to store and compare values received.

The first register acts as an identity with which agents sign their messages.
br

rec
↓,=, ̸=

· · ·

Messages received with the same value come from the same agent.

Nicolas Waldburger 14 / 27

Signature BNRA Well quasi-orders

1 Broadcast networks
Basic model
With registers

2 Signature BNRA
Well quasi-orders
Decidability proof

Nicolas Waldburger 15 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)→ (6, 3)→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)

→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)

→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)

→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×

×
×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)

→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)

→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)

→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)

König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

×

×

×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)

König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)

König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.

We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×
×

×

×

×
×

×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)

→ (6, 3)

→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)

König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!

Nicolas Waldburger 16 / 27

Signature BNRA Well quasi-orders

Well quasi-orders: Subwords

Higman’s lemma

For all finite alphabet Σ, the subword order ⪯ is a well quasi-order over Σ∗.

⇔ Any sequence w0,w1,w2, . . . of words over Σ such that wi ⪯̸ wj for all
i < j is finite.

Given a finite alphabet Σ and a computable function B : N → N, the set
of sequences (wi)i∈N over Σ such that

▶ wi ⪯̸ wj for all i < j

▶ |wi | ≤ B(i) for all i

is finite and computable.

Nicolas Waldburger 17 / 27

Signature BNRA Well quasi-orders

Well quasi-orders: Subwords

Higman’s lemma

For all finite alphabet Σ, the subword order ⪯ is a well quasi-order over Σ∗.

⇔ Any sequence w0,w1,w2, . . . of words over Σ such that wi ⪯̸ wj for all
i < j is finite.

Given a finite alphabet Σ and a computable function B : N → N, the set
of sequences (wi)i∈N over Σ such that

▶ wi ⪯̸ wj for all i < j

▶ |wi | ≤ B(i) for all i

is finite and computable.

Nicolas Waldburger 17 / 27

Signature BNRA Well quasi-orders

Well quasi-orders: Subwords

Higman’s lemma

For all finite alphabet Σ, the subword order ⪯ is a well quasi-order over Σ∗.

⇔ Any sequence w0,w1,w2, . . . of words over Σ such that wi ⪯̸ wj for all
i < j is finite.

Given a finite alphabet Σ and a computable function B : N → N, the set
of sequences (wi)i∈N over Σ such that

▶ wi ⪯̸ wj for all i < j

▶ |wi | ≤ B(i) for all i

is finite and computable.

Nicolas Waldburger 17 / 27

Signature BNRA Decidability proof

1 Broadcast networks
Basic model
With registers

2 Signature BNRA
Well quasi-orders
Decidability proof

Nicolas Waldburger 18 / 27

Signature BNRA Decidability proof

Towards a tree abstraction

Assume that there is a valid run ρ for COVER.

Observation 1

If agent a broadcasts to agents b and c , we can make copy agent a so that
b and c receive messages from distinct agents.

We can modify ρ so that each agent sends messages to one single agent.

Observation 2

If a broadcasts m1 to b then b broadcasts m2 to a, we can make a copy a′

of a that broadcasts to b and then stops; a′ → b → a.

More generally, we can guarantee that the graph of “who sends messages
to whom” has no cycle: it’s a tree (or a forest) !

Nicolas Waldburger 19 / 27

Signature BNRA Decidability proof

Towards a tree abstraction

Assume that there is a valid run ρ for COVER.

Observation 1

If agent a broadcasts to agents b and c , we can make copy agent a so that
b and c receive messages from distinct agents.

We can modify ρ so that each agent sends messages to one single agent.

Observation 2

If a broadcasts m1 to b then b broadcasts m2 to a, we can make a copy a′

of a that broadcasts to b and then stops; a′ → b → a.

More generally, we can guarantee that the graph of “who sends messages
to whom” has no cycle: it’s a tree (or a forest) !

Nicolas Waldburger 19 / 27

Signature BNRA Decidability proof

Tree unfoldings

br(m0, v0)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

br(m, v0)

br(m1, v1)

rec(m0, v0) rec(m2, v2)

br(m3, v1) br(m1, v2)

rec(m1, v1)

br(m2, v2)

m1m3 m2

m

rec(m0, v0) rec(m2, v2) rec(m1, v1)

Nicolas Waldburger 20 / 27

Signature BNRA Decidability proof

Tree unfoldings

br(m0, v0)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

br(m, v0)

br(m1, v1)

rec(m0, v0) rec(m2, v2)

br(m3, v1) br(m1, v2)

rec(m1, v1)

br(m2, v2)

m1m3 m2

m

rec(m0, v0) rec(m2, v2) rec(m1, v1)

Nicolas Waldburger 20 / 27

Signature BNRA Decidability proof

Tree unfoldings

br(m0, v0)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

br(m, v0)

br(m1, v1)

rec(m0, v0) rec(m2, v2)

br(m3, v1) br(m1, v2)

rec(m1, v1)

br(m2, v2)

m1m3 m2

m

rec(m0, v0) rec(m2, v2) rec(m1, v1)

Nicolas Waldburger 20 / 27

Signature BNRA Decidability proof

Tree unfoldings

br(m0, v0)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

br(m, v0)

br(m1, v1)

rec(m0, v0) rec(m2, v2)

br(m3, v1) br(m1, v2)

rec(m1, v1)

br(m2, v2)

m1m3 m2

m

rec(m0, v0) rec(m2, v2) rec(m1, v1)

Nicolas Waldburger 20 / 27

Signature BNRA Decidability proof

Tree unfoldings

br(m0, v0)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

rec(m1, v1)rec(m2, v2)rec(m3, v1)

br(m, v0)

br(m1, v1)

rec(m0, v0) rec(m2, v2)

br(m3, v1) br(m1, v2)

rec(m1, v1)

br(m2, v2)

m1m3 m2

m

rec(m0, v0) rec(m2, v2) rec(m1, v1)

Nicolas Waldburger 20 / 27

Signature BNRA Decidability proof

Tree unfoldings

u1, v1

u2, v2 u3, v3 u4, v4

u6, v6u5, v5 u7, v7

w2 w3 w4

w5 w6 w7

w1
local run, value

word of M∗

Nicolas Waldburger 21 / 27

Signature BNRA Decidability proof

Branch reduction

Lemma

If a node labelled w has a descendant labelled w ′ with w a subword of w ′

then the tree can be reduced.

u, v

u′, v′

w

w ′
· · ·

u′, v′

w ⪯ w ′

...

Nicolas Waldburger 22 / 27

Signature BNRA Decidability proof

Branch reduction

Lemma

If a node labelled w has a descendant labelled w ′ with w a subword of w ′

then the tree can be reduced.

u, v

u′, v′

w

w ′
· · ·

u′, v′

w ⪯ w ′

...

Nicolas Waldburger 22 / 27

Signature BNRA Decidability proof

Branch reduction

Lemma

If a node labelled w has a descendant labelled w ′ with w a subword of w ′

then the tree can be reduced.

u, v

u′, v′
w

w ′
· · ·

u′, v′

w ⪯ w ′

...

Nicolas Waldburger 22 / 27

Signature BNRA Decidability proof

Branch reduction

▶ We can assume that a node labelled w has no descendant labelled
w ′ ⪰ w .

▶ In order to bound the size of the tree, we need a bound on the growth
of the size of the nodes.

Shortening long local runs

There exists a primitive recursive function φ : N → N such that, if an
agent must broadcast k messages, its local run does not need to have
more than k φ(|P|) steps.

|P|: size of the protocol
Proof by shortening arguments (a bit involved)

Nicolas Waldburger 23 / 27

Signature BNRA Decidability proof

Branch reduction

▶ We can assume that a node labelled w has no descendant labelled
w ′ ⪰ w .

▶ In order to bound the size of the tree, we need a bound on the growth
of the size of the nodes.

Shortening long local runs

There exists a primitive recursive function φ : N → N such that, if an
agent must broadcast k messages, its local run does not need to have
more than k φ(|P|) steps.

|P|: size of the protocol
Proof by shortening arguments (a bit involved)

Nicolas Waldburger 23 / 27

Signature BNRA Decidability proof

Branch reduction

▶ We can assume that a node labelled w has no descendant labelled
w ′ ⪰ w .

▶ In order to bound the size of the tree, we need a bound on the growth
of the size of the nodes.

Shortening long local runs

There exists a primitive recursive function φ : N → N such that, if an
agent must broadcast k messages, its local run does not need to have
more than k φ(|P|) steps.

|P|: size of the protocol
Proof by shortening arguments (a bit involved)

Nicolas Waldburger 23 / 27

Signature BNRA Decidability proof

Bounding the branches

u0, v0

u1, v1

u2, v2

uN , vN

root

w1

w2

wN

|u0| ≤ φ(|P|)

|w1| ≤ φ(|P|)

|u1| ≤ φ(|P|)2

|w2| ≤ φ(|P|)2

|wN | ≤ φ(|P|)N

|u2| ≤ φ(|P|)3

|uN | ≤ φ(|P|)N+1

· · ·

Nicolas Waldburger 24 / 27

Signature BNRA Decidability proof

Bounding the branches

u0, v0

u1, v1

u2, v2

uN , vN

root

w1

w2

wN

|u0| ≤ φ(|P|)

|w1| ≤ φ(|P|)

|u1| ≤ φ(|P|)2

|w2| ≤ φ(|P|)2

|wN | ≤ φ(|P|)N

|u2| ≤ φ(|P|)3

|uN | ≤ φ(|P|)N+1

· · ·

Nicolas Waldburger 24 / 27

Signature BNRA Decidability proof

Bounding the branches

u0, v0

u1, v1

u2, v2

uN , vN

root

w1

w2

wN

|u0| ≤ φ(|P|)

|w1| ≤ φ(|P|)

|u1| ≤ φ(|P|)2

|w2| ≤ φ(|P|)2

|wN | ≤ φ(|P|)N

|u2| ≤ φ(|P|)3

|uN | ≤ φ(|P|)N+1

· · ·

Nicolas Waldburger 24 / 27

Signature BNRA Decidability proof

Bounding the branches

u0, v0

u1, v1

u2, v2

uN , vN

root

w1

w2

wN

|u0| ≤ φ(|P|)

|w1| ≤ φ(|P|)

|u1| ≤ φ(|P|)2

|w2| ≤ φ(|P|)2

|wN | ≤ φ(|P|)N

|u2| ≤ φ(|P|)3

|uN | ≤ φ(|P|)N+1

· · ·

Nicolas Waldburger 24 / 27

Signature BNRA Decidability proof

Bounding the branches

u0, v0

u1, v1

u2, v2

uN , vN

root

w1

w2

wN

|u0| ≤ φ(|P|)

|w1| ≤ φ(|P|)

|u1| ≤ φ(|P|)2

|w2| ≤ φ(|P|)2

|wN | ≤ φ(|P|)N

|u2| ≤ φ(|P|)3

|uN | ≤ φ(|P|)N+1

· · ·

Nicolas Waldburger 24 / 27

Signature BNRA Decidability proof

Decidability and complexity

Bounds

We use the previous argument to bound (in an irreducible tree):

▶ the length of all branches,

▶ the size of every node,

▶ the maximal degree of the tree.

This bounds the total space needed to store such a tree.

We can enumerate all irreducible trees in finite time, therefore

Theorem

The Cover problem for signature BNRA is decidable

and in Fωω .

Can be extended to the non-signature case.

Nicolas Waldburger 25 / 27

Signature BNRA Decidability proof

Decidability and complexity

Bounds

We use the previous argument to bound (in an irreducible tree):

▶ the length of all branches,

▶ the size of every node,

▶ the maximal degree of the tree.

This bounds the total space needed to store such a tree.

We can enumerate all irreducible trees in finite time, therefore

Theorem

The Cover problem for signature BNRA is decidable

and in Fωω .

Can be extended to the non-signature case.

Nicolas Waldburger 25 / 27

Signature BNRA Decidability proof

Decidability and complexity

Bounds

We use the previous argument to bound (in an irreducible tree):

▶ the length of all branches,

▶ the size of every node,

▶ the maximal degree of the tree.

This bounds the total space needed to store such a tree.

We can enumerate all irreducible trees in finite time, therefore

Theorem

The Cover problem for signature BNRA is decidable and in Fωω .

Can be extended to the non-signature case.

Nicolas Waldburger 25 / 27

Signature BNRA Decidability proof

Decidability and complexity

Bounds

We use the previous argument to bound (in an irreducible tree):

▶ the length of all branches,

▶ the size of every node,

▶ the maximal degree of the tree.

This bounds the total space needed to store such a tree.

We can enumerate all irreducible trees in finite time, therefore

Theorem

The Cover problem for signature BNRA is decidable and in Fωω .

Can be extended to the non-signature case.

Nicolas Waldburger 25 / 27

Signature BNRA Decidability proof

Complexity lower bounds

Lossy Channel Systems

A Lossy Channel System (LCS) is a transition system with a FIFO queue
and unreliable writes.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

It is however NP-complete when each agent has only one register.

Nicolas Waldburger 26 / 27

Signature BNRA Decidability proof

Complexity lower bounds

Lossy Channel Systems

A Lossy Channel System (LCS) is a transition system with a FIFO queue
and unreliable writes.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

It is however NP-complete when each agent has only one register.

Nicolas Waldburger 26 / 27

Signature BNRA Decidability proof

Complexity lower bounds

Lossy Channel Systems

A Lossy Channel System (LCS) is a transition system with a FIFO queue
and unreliable writes.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

It is however NP-complete when each agent has only one register.

Nicolas Waldburger 26 / 27

Signature BNRA Decidability proof

Conclusion

Thank you for your attention!

Nicolas Waldburger 27 / 27

Nicolas Waldburger 1 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

ab

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

a

b

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

a

b

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)w(c)

w(c) r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

a

b

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)w(b)

w(b)w(b)

a

a

b

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)w(b)

w(b)

w(b)

a

a

b

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)w(b)

w(b)w(b)

a

ab

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)w(b)w(b)

w(b)

a

a

b

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)w(c)

w(c)

r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

ab

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

ab

Nicolas Waldburger 2 / 5

Complexity: encoding Lossy Channel Systems

We simulate an LCS through a chain of agents that each apply a
transition.
Each agent stores:

▶ An identifier for itself

▶ Its predecessor’s identifier

· · ·q0 q1w1 qnwn

Nicolas Waldburger 3 / 5

Complexity: encoding Lossy Channel Systems

br(q0,□2)

rec(q, ↓□1)

br(q′,□2) br(a,□2)

rec(x ,=□1)

br(x ,□2)

For each transition q
w(a)−−−→ q′ of the LCS

Nicolas Waldburger 4 / 5

Complexity: encoding Lossy Channel Systems

br(q0,□2)

rec(q, ↓□1)

br(q′,□2) br(a,□2)

rec(x ,=□1)

br(x ,□2)

For each transition q
w(a)−−−→ q′ of the LCS

Nicolas Waldburger 4 / 5

Complexity results

Fωω = Hyper-Ackermannian complexity class.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

Theorem

Cover in BNRA with one register is NP-complete.

Nicolas Waldburger 5 / 5

Complexity results

Fωω = Hyper-Ackermannian complexity class.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

Theorem

Cover in BNRA with one register is NP-complete.

Nicolas Waldburger 5 / 5

Complexity results

Fωω = Hyper-Ackermannian complexity class.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

Theorem

Cover in BNRA with one register is NP-complete.

Nicolas Waldburger 5 / 5

	Broadcast networks
	Basic model
	With registers

	Signature BNRA
	Well quasi-orders
	Decidability proof

	Appendix

