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Broadcast networks Basic model

Broadcast Networks

Definition1

(Reconfigurable) Broadcast Network = (Q,M,∆, q0) with
∆ ⊆ Q × {br(m), rec(m) | m ∈ M} × Q.

▶ Arbitrarily many agents at the start

▶ One step = an agent broadcasts a message m,
some (arbitrary subset of) other agents receive it.

Problems

Cover: Is there a run in which an agent reaches qf ?
Target: Is there a run in which all agents reach qf simultaneously?

Both problems are decidable in PTIME12.

1Delzanno, Sangnier, Zavattaro, CONCUR’10
2Fournier, PhD thesis, 2015
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Each agent now has local registers□1, . . . ,□r , containing values in N.
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Broadcast networks With registers

Broadcast Networks of Register Automata (BNRA)3

Each agent now has local registers□1, . . . ,□r , containing values in N.

Initially, all registers of all agents contain distinct values.

Messages also contain values: (m, v) ∈ M × N. An agent can:

▶ Broadcast a message with a register value br(m, ri )

▶ Receive messages rec(m, ri , op), with op either

store the value ↓,
test it for equality =, ̸=
or do nothing ∗.

Remark: the model where one allows to send two messages per broadcast
is undecidable3.

3Delzanno, Sangnier, Traverso, RP’13
Nicolas Waldburger 9 / 27
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Things we can do

We can check that a sequence of messages all come from the same agent.

rec(a,=□2)

rec(a, ↓□2)
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rec(c ,=□2)
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Broadcast networks With registers

Things we can do

We can check that a sequence of messages we sent was received.

br(a,□1) br(b,□1) rec(ok,=□1)

rec(b,=□1) br(ok,□1)
rec(a, ↓□1)
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Broadcast networks With registers

Parameterized verification principles

▶ Unlimited supply of agents.

▶ For Cover, we can add as many agents as we need at no cost.

Copycat principle

Given a run ρ, we can construct a run made of many copies of ρ running
in parallel.

Main theorem

Cover is decidable for BNRA.
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Signature BNRA

An agent never modifies its first register, and only broadcasts with the
value of its first signature.
Other registers are used to store and compare values received.

The first register acts as an identity with which agents sign their messages.
br

rec
↓,=, ̸=

· · ·

Messages received with the same value come from the same agent.
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Well quasi-orders

0 1 2 3 4 5 6 7 8
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×

×

▶ You cannot pick a point higher on both

coordinates than one of the previous ones.

▶ Your ith point (xi , yi ) has to be

such that |xi |, |yi | ≤ 10i .

(5,7) (3,4) · · ·≤ 10

(2,75)(61,2) (99,3) · · ·≤ 100

(98,3) (975,2)(887,2) · · ·≤ 1000

(4, 3)→ (6, 3)→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
König’s lemma → this tree is finite.
In fact, there is a computable bound on the length of the longest branch.
We can enumerate all possible such trees!
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Signature BNRA Well quasi-orders

Well quasi-orders: Subwords

Higman’s lemma

For all finite alphabet Σ, the subword order ⪯ is a well quasi-order over Σ∗.

⇔ Any sequence w0,w1,w2, . . . of words over Σ such that wi ⪯̸ wj for all
i < j is finite.

Given a finite alphabet Σ and a computable function B : N → N, the set
of sequences (wi )i∈N over Σ such that

▶ wi ⪯̸ wj for all i < j

▶ |wi | ≤ B(i) for all i

is finite and computable.
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Signature BNRA Decidability proof

Towards a tree abstraction

Assume that there is a valid run ρ for COVER.

Observation 1

If agent a broadcasts to agents b and c , we can make copy agent a so that
b and c receive messages from distinct agents.

We can modify ρ so that each agent sends messages to one single agent.

Observation 2

If a broadcasts m1 to b then b broadcasts m2 to a, we can make a copy a′

of a that broadcasts to b and then stops; a′ → b → a.

More generally, we can guarantee that the graph of “who sends messages
to whom” has no cycle: it’s a tree (or a forest) !
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Tree unfoldings

br(m0, v0)

rec(m1, v1)rec(m2, v2)rec(m3, v1)
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Signature BNRA Decidability proof

Tree unfoldings

u1, v1

u2, v2 u3, v3 u4, v4

u6, v6u5, v5 u7, v7

w2 w3 w4

w5 w6 w7

w1
local run, value

word of M∗
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Signature BNRA Decidability proof

Branch reduction

Lemma

If a node labelled w has a descendant labelled w ′ with w a subword of w ′

then the tree can be reduced.

u, v

u′, v′

w

w ′
· · ·

u′, v′

w ⪯ w ′

...
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Signature BNRA Decidability proof

Branch reduction

▶ We can assume that a node labelled w has no descendant labelled
w ′ ⪰ w .

▶ In order to bound the size of the tree, we need a bound on the growth
of the size of the nodes.

Shortening long local runs

There exists a primitive recursive function φ : N → N such that, if an
agent must broadcast k messages, its local run does not need to have
more than k φ(|P|) steps.

|P|: size of the protocol
Proof by shortening arguments (a bit involved)
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Bounding the branches

u0, v0

u1, v1

u2, v2

uN , vN

root

w1

w2

wN

|u0| ≤ φ(|P|)

|w1| ≤ φ(|P|)

|u1| ≤ φ(|P|)2

|w2| ≤ φ(|P|)2

|wN | ≤ φ(|P|)N

|u2| ≤ φ(|P|)3

|uN | ≤ φ(|P|)N+1

· · ·
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Signature BNRA Decidability proof

Decidability and complexity

Bounds

We use the previous argument to bound (in an irreducible tree):

▶ the length of all branches,

▶ the size of every node,

▶ the maximal degree of the tree.

This bounds the total space needed to store such a tree.

We can enumerate all irreducible trees in finite time, therefore

Theorem

The Cover problem for signature BNRA is decidable

and in Fωω .

Can be extended to the non-signature case.
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Signature BNRA Decidability proof

Complexity lower bounds

Lossy Channel Systems

A Lossy Channel System (LCS) is a transition system with a FIFO queue
and unreliable writes.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

It is however NP-complete when each agent has only one register.
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Signature BNRA Decidability proof

Conclusion

Thank you for your attention!
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Complexity: encoding Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

ab
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Complexity: encoding Lossy Channel Systems

We simulate an LCS through a chain of agents that each apply a
transition.
Each agent stores:

▶ An identifier for itself

▶ Its predecessor’s identifier

· · ·q0 q1w1 qnwn

Nicolas Waldburger 3 / 5



Complexity: encoding Lossy Channel Systems

br(q0,□2)

rec(q, ↓□1)

br(q′,□2) br(a,□2)

rec(x ,=□1)

br(x ,□2)

For each transition q
w(a)−−−→ q′ of the LCS
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Complexity results

Fωω = Hyper-Ackermannian complexity class.

Theorem

LCS reachability is Fωω -harda.

aSchnoebelen, Information Processing Letters ’08

Theorem

Cover in BNRA is Fωω -complete, even for signature protocols with two
registers.

Theorem

Cover in BNRA with one register is NP-complete.
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