
Getting readable proofs for replicated
systems from automated provers

Michael Raskin

LaBRI

2024-01-16

Joint work with Javier Esparza and Christoph Welzel (TU Munich)

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 1 / 19



Setting: replicated systems

Systems with many identical components
Arbitrary number of components
Safety conditions: never go into bad states
Unbounded state space, risk of undecidability

Examples
Dining philosophers
Dijkstra's mutual exclusion algorithm
Cache coherence
…

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 2 / 19



Setting: replicated systems

Systems with many identical components
Arbitrary number of components
Safety conditions: never go into bad states
Unbounded state space, risk of undecidability

Examples
Dining philosophers
Dijkstra's mutual exclusion algorithm
Cache coherence
…

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 2 / 19



Is decidable model checking enough?

Some models are undecidable
… some are even undecidable for good reasons!

Unclear what parts of decision procedures are reusable

The answer «yes, all OK» is not always all you want to know
… and neither is 10MB of quickly-verifiable certificate

Can we get a simple explanation?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 3 / 19



Is decidable model checking enough?

Some models are undecidable
… some are even undecidable for good reasons!

Unclear what parts of decision procedures are reusable

The answer «yes, all OK» is not always all you want to know
… and neither is 10MB of quickly-verifiable certificate

Can we get a simple explanation?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 3 / 19



Is decidable model checking enough?

Some models are undecidable
… some are even undecidable for good reasons!

Unclear what parts of decision procedures are reusable

The answer «yes, all OK» is not always all you want to know
… and neither is 10MB of quickly-verifiable certificate

Can we get a simple explanation?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 3 / 19



Is decidable model checking enough?

Some models are undecidable
… some are even undecidable for good reasons!

Unclear what parts of decision procedures are reusable

The answer «yes, all OK» is not always all you want to know
… and neither is 10MB of quickly-verifiable certificate

Can we get a simple explanation?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 3 / 19



Is decidable model checking enough?

Some models are undecidable
… some are even undecidable for good reasons!

Unclear what parts of decision procedures are reusable

The answer «yes, all OK» is not always all you want to know
… and neither is 10MB of quickly-verifiable certificate

Can we get a simple explanation?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 3 / 19



Is decidable model checking enough?

Some models are undecidable
… some are even undecidable for good reasons!

Unclear what parts of decision procedures are reusable

The answer «yes, all OK» is not always all you want to know
… and neither is 10MB of quickly-verifiable certificate

Can we get a simple explanation?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 3 / 19



Dijkstra's mutual exclusion algorithm

(Just to pick which of Dijkstra's mutex…)
n agents
Each can execute a critical section
To enter critical section an agent…

Sets an intent flag in its own shared memory block
Checks if any other agent has the intent flag set
Proceeds if no

Some extra work to ensure progress
Progress features cannot violate correctness

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 4 / 19



Dijkstra's mutual exclusion algorithm

(Just to pick which of Dijkstra's mutex…)
n agents
Each can execute a critical section
To enter critical section an agent…

Sets an intent flag in its own shared memory block
Checks if any other agent has the intent flag set
Proceeds if no

Some extra work to ensure progress
Progress features cannot violate correctness

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 4 / 19



Dijkstra's mutual exclusion algorithm

(Just to pick which of Dijkstra's mutex…)
n agents
Each can execute a critical section
To enter critical section an agent…

Sets an intent flag in its own shared memory block
Checks if any other agent has the intent flag set
Proceeds if no

Some extra work to ensure progress
Progress features cannot violate correctness

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 4 / 19



Dijkstra's mutual exclusion algorithm

(Just to pick which of Dijkstra's mutex…)
n agents
Each can execute a critical section
To enter critical section an agent…

Sets an intent flag in its own shared memory block
Checks if any other agent has the intent flag set
Proceeds if no

Some extra work to ensure progress
Progress features cannot violate correctness

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 4 / 19



Implications of Dijkstra's mutex

We want to model DM and prove it's safe
What a good model of DM implies?

Leader election
What else is a mutex?

Leader can find a follower in a specific state
Minsky counter machine
Undecidability

Oh well, maybe just use heuristics

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 5 / 19



Implications of Dijkstra's mutex

We want to model DM and prove it's safe
What a good model of DM implies?

Leader election
What else is a mutex?

Leader can find a follower in a specific state
Minsky counter machine
Undecidability

Oh well, maybe just use heuristics

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 5 / 19



Implications of Dijkstra's mutex

We want to model DM and prove it's safe
What a good model of DM implies?

Leader election
What else is a mutex?

Leader can find a follower in a specific state
Minsky counter machine
Undecidability

Oh well, maybe just use heuristics

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 5 / 19



Implications of Dijkstra's mutex

We want to model DM and prove it's safe
What a good model of DM implies?

Leader election
What else is a mutex?

Leader can find a follower in a specific state
Minsky counter machine
Undecidability

Oh well, maybe just use heuristics

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 5 / 19



Generic heuristic search tools

Many tools for undecidable or just intractable manage to be
good enough

SAT-solvers
SMT-solvers
First-order logic automated theorem provers
…

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 6 / 19



Generic heuristic search tools

Many tools for undecidable or just intractable manage to be
good enough

SAT-solvers
SMT-solvers
First-order logic automated theorem provers
…

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 6 / 19



Generic heuristic search tools

Many tools for undecidable or just intractable manage to be
good enough

SAT-solvers
SMT-solvers
First-order logic automated theorem provers
…

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 6 / 19



Heuristic search in finite case: CEGAR

Finite state systems behaviours are decidable, but how
explainable they are?

CEGAR (CounterExample-Guided Abstraction Refinement)
Recall the CEGAR loop:

Is there a bad state compatible with current invariants?
SMT-solver

Can this bad state be reached?
(optional)

Any nice invariant separating reachable states from this
bad one?

SMT-solver
If yes, add this invariant

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 7 / 19



Heuristic search in finite case: CEGAR

Finite state systems behaviours are decidable, but how
explainable they are?

CEGAR (CounterExample-Guided Abstraction Refinement)
Recall the CEGAR loop:

Is there a bad state compatible with current invariants?
SMT-solver

Can this bad state be reached?
(optional)

Any nice invariant separating reachable states from this
bad one?

SMT-solver
If yes, add this invariant

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 7 / 19



Heuristic search in finite case: CEGAR

Finite state systems behaviours are decidable, but how
explainable they are?

CEGAR (CounterExample-Guided Abstraction Refinement)
Recall the CEGAR loop:

Is there a bad state compatible with current invariants?
SMT-solver

Can this bad state be reached?
(optional)

Any nice invariant separating reachable states from this
bad one?

SMT-solver
If yes, add this invariant

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 7 / 19



Heuristic search in finite case: CEGAR

Finite state systems behaviours are decidable, but how
explainable they are?

CEGAR (CounterExample-Guided Abstraction Refinement)
Recall the CEGAR loop:

Is there a bad state compatible with current invariants?
SMT-solver

Can this bad state be reached?
(optional)

Any nice invariant separating reachable states from this
bad one?

SMT-solver
If yes, add this invariant

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 7 / 19



Heuristic search in finite case: CEGAR

Finite state systems behaviours are decidable, but how
explainable they are?

CEGAR (CounterExample-Guided Abstraction Refinement)
Recall the CEGAR loop:

Is there a bad state compatible with current invariants?
SMT-solver

Can this bad state be reached?
(optional)

Any nice invariant separating reachable states from this
bad one?

SMT-solver
If yes, add this invariant

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 7 / 19



CEGAR loop

Heuristic loop; possible outcomes:
Reachable bad state
Set of invariants excluding all bad states
Unreachable bad state not preventable by nice invariants

Invariant description is simpler in finite-state systems
We either finish, or exhaust states
… or hang the SMT-solver … or run out of RAM
… or run out of patience

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 8 / 19



CEGAR loop

Heuristic loop; possible outcomes:
Reachable bad state
Set of invariants excluding all bad states
Unreachable bad state not preventable by nice invariants

Invariant description is simpler in finite-state systems
We either finish, or exhaust states
… or hang the SMT-solver … or run out of RAM
… or run out of patience

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 8 / 19



CEGAR loop

Heuristic loop; possible outcomes:
Reachable bad state
Set of invariants excluding all bad states
Unreachable bad state not preventable by nice invariants

Invariant description is simpler in finite-state systems
We either finish, or exhaust states
… or hang the SMT-solver … or run out of RAM
… or run out of patience

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 8 / 19



CEGAR loop

Heuristic loop; possible outcomes:
Reachable bad state
Set of invariants excluding all bad states
Unreachable bad state not preventable by nice invariants

Invariant description is simpler in finite-state systems
We either finish, or exhaust states
… or hang the SMT-solver … or run out of RAM
… or run out of patience

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 8 / 19



Replicated systems

Some special language for describing invariants
Even when decidable (WS1S), we still want explanations!

Strategy: generalise CEGAR invariants from specific size

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 9 / 19



Replicated systems

Some special language for describing invariants
Even when decidable (WS1S), we still want explanations!

Strategy: generalise CEGAR invariants from specific size

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 9 / 19



Our work

Make fixed-size instances
Run CEGAR there
Encode the invariants in WS1S or just first-order logic
Encode the system in WS1S or FOL
Generalise

… heuristically
… or by proving sound abstraction rules

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 10 /19



Our work

Make fixed-size instances
Run CEGAR there
Encode the invariants in WS1S or just first-order logic
Encode the system in WS1S or FOL
Generalise

… heuristically
… or by proving sound abstraction rules

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 10 /19



Sound abstraction rule: example

Where sound abstraction rules come from? Symmetry

Let system definition be stable under component permutation

Let interactions be pairwise

CEGAR finds inductive invariant:
«at size 5,
component 1 has state ‘a’ or component 2 has state ‘b’»

Then this holds for every size above four and every two
components,
by symmetry

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 11 /19



Sound abstraction rule: example

Where sound abstraction rules come from? Symmetry

Let system definition be stable under component permutation

Let interactions be pairwise

CEGAR finds inductive invariant:
«at size 5,
component 1 has state ‘a’ or component 2 has state ‘b’»

Then this holds for every size above four and every two
components,
by symmetry

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 11 /19



Sound abstraction rule: example

Where sound abstraction rules come from? Symmetry

Let system definition be stable under component permutation

Let interactions be pairwise

CEGAR finds inductive invariant:
«at size 5,
component 1 has state ‘a’ or component 2 has state ‘b’»

Then this holds for every size above four and every two
components,
by symmetry

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 11 /19



Sound abstraction rule: example

Where sound abstraction rules come from? Symmetry

Let system definition be stable under component permutation

Let interactions be pairwise

CEGAR finds inductive invariant:
«at size 5,
component 1 has state ‘a’ or component 2 has state ‘b’»

Then this holds for every size above four and every two
components,
by symmetry

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 11 /19



Heuristic abstraction

Either component 2 is in state ‘a’,
or component 7 is in state ‘b’,
or one of the components 3,4,5,6 is in state ‘c’.

Maybe…
for each i < j: ‘a’ at i or ‘b’ at j or ‘c’ between?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 12 /19



Heuristic abstraction

Either component 2 is in state ‘a’,
or component 7 is in state ‘b’,
or one of the components 3,4,5,6 is in state ‘c’.

Maybe…
for each i < j: ‘a’ at i or ‘b’ at j or ‘c’ between?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 12 /19



Using heuristic abstraction

We have a guess, so what

Encode it in the first order logic
Encode the system in first order logic
Ask an automated theorem prover if the guess is invariant

How many invariants do we need anyway?

Try a new size
Instantiate all generic invariants
If not enough for one size, try to get more
Ask FOL ATP if invariants imply safety

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 13 /19



Using heuristic abstraction

We have a guess, so what

Encode it in the first order logic
Encode the system in first order logic
Ask an automated theorem prover if the guess is invariant

How many invariants do we need anyway?

Try a new size
Instantiate all generic invariants
If not enough for one size, try to get more
Ask FOL ATP if invariants imply safety

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 13 /19



Using heuristic abstraction

We have a guess, so what

Encode it in the first order logic
Encode the system in first order logic
Ask an automated theorem prover if the guess is invariant

How many invariants do we need anyway?

Try a new size
Instantiate all generic invariants
If not enough for one size, try to get more
Ask FOL ATP if invariants imply safety

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 13 /19



Readability

For Dijkstra's mutex, it's a handful

One of them:
«if processes p0 and p1 are both actively iterating,
p0's pointer has not yet reached p1 or vice versa»

(Quite annoying to formalise just right by hand the first time)

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 14 /19



Readability

For Dijkstra's mutex, it's a handful

One of them:
«if processes p0 and p1 are both actively iterating,
p0's pointer has not yet reached p1 or vice versa»

(Quite annoying to formalise just right by hand the first time)

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 14 /19



Technicalities

Things get encoded: WS1S, Petri nets, Regular transition
systems
Solvers: SAT-solver, SMT-solver, ATP
Z3, Z3, mainly Vampire + Eprover + CVC4
Invariants: traps (Σ ≥ 1), balanced sets (Σ = 1)
Generalisations: logic of order, regular languages of traps

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 15 /19



Applicability

How specific are parts?

Choices
Model for describing the original system
Model for studying finite instances
Logic for general case

Things to have
Translation to finite instances
Translation to parametric definition
CEGAR loop
Generalisation heuristics

The most «creative» parts are easiest to reuse between areas

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 16 /19



Applicability

How specific are parts?

Choices
Model for describing the original system
Model for studying finite instances
Logic for general case

Things to have
Translation to finite instances
Translation to parametric definition
CEGAR loop
Generalisation heuristics

The most «creative» parts are easiest to reuse between areas

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 16 /19



Applicability

How specific are parts?

Choices
Model for describing the original system
Model for studying finite instances
Logic for general case

Things to have
Translation to finite instances
Translation to parametric definition
CEGAR loop
Generalisation heuristics

The most «creative» parts are easiest to reuse between areas

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 16 /19



Performance observations

So we have…
… CEGAR loop, using solvers of NP-complete SAT
… and FOL ATP, striving at an undecidable problem

Good cases: ATP takes much less time than SAT-solver
Bad cases: CEGAR fails for a specific size

Easy not to be undecidability-limited here!
Future work:

Better invariant classes
Better models to run CEGAR loop in?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 17 /19



Performance observations

So we have…
… CEGAR loop, using solvers of NP-complete SAT
… and FOL ATP, striving at an undecidable problem

Good cases: ATP takes much less time than SAT-solver
Bad cases: CEGAR fails for a specific size

Easy not to be undecidability-limited here!
Future work:

Better invariant classes
Better models to run CEGAR loop in?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 17 /19



Performance observations

So we have…
… CEGAR loop, using solvers of NP-complete SAT
… and FOL ATP, striving at an undecidable problem

Good cases: ATP takes much less time than SAT-solver
Bad cases: CEGAR fails for a specific size

Easy not to be undecidability-limited here!
Future work:

Better invariant classes
Better models to run CEGAR loop in?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 17 /19



Performance observations

So we have…
… CEGAR loop, using solvers of NP-complete SAT
… and FOL ATP, striving at an undecidable problem

Good cases: ATP takes much less time than SAT-solver
Bad cases: CEGAR fails for a specific size

Easy not to be undecidability-limited here!
Future work:

Better invariant classes
Better models to run CEGAR loop in?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 17 /19



Thanks for your attention!

Questions?

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 18 /19



Conclusions

Some parametric systems need heuristic approach
First-order logic theorem provers can be useful
Proofs have readable summaries
Undecidability is not the limiting factor in practice
We need more and better invariants!

Michael Raskin (LaBRI) Getting readable proofs for replicated systems from automated provers2024-01-16 19 /19


