An Automata Based Approach for Synchronizable

Mailbox Communication

Romain Delpy, Anca Muscholl, Grégoire Sutre
Univ. of Bordeaux, France

CONCUR 2024, Calgary

Po P1 P2

Introduction

Mailbox semantics

Po: q: P1:

po'a(mo) p1lq(mi)

q?po(mo)

a?p1(mi)

1/15

Mailbox semantics

Po: q: P1:
P send
Po'q(mo) a?po(mo) p1lq(my)
q?plonl) receive

1/15

Mailbox semantics

Po- q: P1:
send
! !
Po q(mO) q?po(mo) P1 q(ml)
q?plonl) receive
Po One FIFO
Mailbox: >>» N channel per

Y process.

1/15

Mailbox semantics

Po: q: P1:
send
! !
po'a(mo) 47po(mo) p1lq(m1)
q?p1(m1) receive
Po One FIFO
Mailbox: >>» my channel per

Y process.

1/15

Mailbox semantics

Po: q: P1:
send
Ig(m Ig(m
po'a(mo) 47po(mo) p1lq(m1)
q?p1(m1) receive
Po One FIFO
Mailbox: >>» mo M1 —Q channel per
Y process.

1/15

Mailbox semantics

Po: q: P1:
send
Ig(m Ig(m
po'a(mo) 47po(mo) p1lq(m1)
q?p1(m1) receive
Po One FIFO
Mailbox: > mo M1 —Q channel per

Y process.

Mailbox executions

Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/15

Restriction

State reachability is undecidable [Brand-Zafiropulo 1983]:

Requires restrictions.

2/15

Restriction

State reachability is undecidable [Brand-Zafiropulo 1983]:

Requires restrictions.

Exchange: Sequence of actions with all sends before receives.

Usual for round-based systems (distributed algorithms)

l S | R | S | R |

2/15

Restriction

State reachability is undecidable [Brand-Zafiropulo 1983]:

Requires restrictions.

Exchange: Sequence of actions with all sends before receives.

Usual for round-based systems (distributed algorithms)

l S | R | S | R |

Synchronizability

A CFM is synchronizable if every execution can be reordered into a
sequence of exchanges (no message split).

2/15

Synchronizability

Synchronizability = State reachability decidable?

Synchronizability decidable?

3/15

Introduction

Reachability

k-synchronizability
k-exchanges [Bouajjani et al. 2018]: Exchanges with at most k

sends.

A CFM is k-synchronizable if every execution can be reordered
into a sequence of k-exchanges (no message split).

0 S<«k , R |/ S<« , R |

4/15

k-synchronizability

k-exchanges [Bouajjani et al. 2018]: Exchanges with at most k
sends.

A CFM is k-synchronizable if every execution can be reordered
into a sequence of k-exchanges (no message split).

0 S<«k , R |/ S<« , R |

Prev. results [Bouajjani et al. 2018,Di Giusto et al. 2020,/2021]

® Reachability is decidable under k-synchronizability (PSPACE).
® For fixed k, "is the CFM k-synchronizable?" is PSPACE.

® "Is there some k such that the CFM is k-synchronizable?" is
decidable (no complexity).

Warning: Slightly different definition for synchronizability.
4/15

Reachability

Exchange normal form

In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

® plgo(mo) p'gi(m1)

® po'a(mo) p1'a(mi)

5/15

Reachability

Exchange normal form

In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

® p!qo(mo) p!qi(mi) do?p(mo) q17p(ms)

® po!q(mo) p1'g(m1) q?po(mo) q?pi(m1)

5/15

Reachability

Exchange normal form

In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

po'a(mo) p1'a(mi)

5/15

Reachability

Exchange normal form

In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.
Po'q(mo) p1lq(mi)

4

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] — exp-size automaton, PSPACE

5/15

Reachability

Exchange normal form

In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.
Po'q(mo) p1lq(mi)

4

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] — exp-size automaton, PSPACE

5/15

Reachability

Exchange normal form

In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

po'q(mo) p1!q(m1) q?po(mo)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] — exp-size automaton, PSPACE

5/15

Reachability

Exchange normal form

In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

po'q(mo) p1!q(mi) N q?po(mo)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] — exp-size automaton, PSPACE

5/15

Introduction

Reachability

Checking synchronizability

_ Checking synchronizability

What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:

6/15

_ Checking synchronizability

What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:

p1!po(mo) p1!p2(m1) p2?p1(m1) p2!p1(m2) p17p2(m2) po!p1(m3) po?p1(mo)

6/15

Mailbox MSC

Message Sequence Charts (MSC)

Partial-order representation of executions:
process order + message arcs
Two executions are equivalent if they have the same MSC.

Po q P1
Mo

mj
mo

7/15

Mailbox MSC

Mailbox Message Sequence Charts (MSC)

Partial-order representation of executions:
process order + message arcs + mailbox order.
Two executions are equivalent if they have the same MSC.

Po q P1

Two sends to the same process, sp and s;, are mailbox-ordered if:
® sy is matched (with rp)
® 5, is unmatched, or is matched with r; and iy < np
7/15

_ Checking synchronizability

What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:

p1!po(mo) p1!p2(m1) p2?p1(m1) p2!p1(m2) p17p2(m2) po!p1(m3) po?p1(mo)

Po P1 P2

8/15

_ Checking synchronizability

What does not synchronizable mean?
Execution that cannot be reordered into a sequence of exchanges:
p1!po(mo) p1!p2(m1) p2?p1(m1) p2!p1(m2) p1?p2(m2) po!p1(ms) po?p1(mo)

Po P1 P2

® atomic sequence

® 3 receive before a send on some
process

8/15

Atomicity

A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

9/15

Atomicity

A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

® message po!p1(m)p1?po(m) atomic

9/15

Atomicity

A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

® message po!p1(m)p1?po(m) atomic

® sps1 o

P3

Po P1 P2
op—fs at—1s

9/15

Atomicity

A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

® message po!p1(m)p1?po(m) atomic

® sps1 My = Sphp St nhon-atomic

P2 P3

Po P1
ot of—t

9/15

Atomicity

A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

® message po!p1(m)p1?po(m) atomic

® sps1 My = Sphp St nhon-atomic

P2 P3

Po P1
ot of—t

® concurrent messages atomic

Po P1

9/15

___Atomicity: A graphical approach__

Po P1

>

10/15

___Atomicity: A graphical approach__

Po P1

Graph: added backward
message arcs

10/15

___Atomicity: A graphical approach__

A sequence is atomic iff its graph is
Po P1 strongly connected.

Graph: added backward
message arcs

10/15

___Atomicity: A graphical approach__

A sequence is atomic iff its graph is
Po P1 strongly connected.

Graph: added backward
message arcs

10/15

___Atomicity: A graphical approach__

A sequence is atomic iff its graph is
Po P1 strongly connected.

Graph: added backward
message arcs

10/15

___Atomicity: A graphical approach__

A sequence is atomic iff its graph is
Po P1 strongly connected.

Graph: added backward
message arcs

Atomicity of exchanges

The language of marked send sequences of atomic exchanges is
regular (exp-size automaton built on-the-fly, PSPACE).

10/15

_ Checking synchronizability

What does not synchronizable mean?
Execution that cannot be reordered into a sequence of exchanges:

Po P1 P2

® atomic sequence

® 3 receive before a send on some
process

11/15

_ Checking synchronizability

What does not synchronizable mean?
Execution that cannot be reordered into a sequence of exchanges:

Po P1 P2

® atomic sequence

® 3 receive before a send on some
process

Removing last action makes it synchronizable!

P 1o

11/15

_ Checking synchronizability

What does not synchronizable mean?
Execution that cannot be reordered into a sequence of exchanges:
Po P1 P2

® atomic sequence
® 3 receive before a send on some
process

Removing last action makes it synchronizable!
)
: Need to check a path going from first
':I “. send action sy through a receive then a
_______) ' send and ending before the future

- receive ry

11/15

Path between exchanges

Po sopl P2 Need a way to connect path between
--l——e atomic exchanges

41

12/15

Path between exchanges

Need a way to connect path between
atomic exchanges

in/out-points: out-point at end of
exchange, in-point at start of next
exchange, there must be an order
P 1o between out-point and in-point.

12/15

Path between exchanges

Need a way to connect path between
atomic exchanges

in/out-points: out-point at end of
exchange, in-point at start of next
exchange, there must be an order
P 1o between out-point and in-point.

p2 P3 P4 Not always first send that
- kjl gets "unmatched" from
= last action.
’,/" L Need to check for validity
t-- while guessing the
Io sequence of exchanges. ..

12/15

Path between exchanges

Po sopl P2 Need a way to connect path between
} -- |<—¢¢p atomic exchanges
q o Sk o tembmn ik otk ak ommd A

Checking if a given CFM is synchronizable for mailbox semantics is
PsPACE-complete

=T o g zr IA\alai= AV e\t ilst~2lalelnaale b

P last action.

-7 ¢ Need to check for validity
t-- while guessing the
o sequence of exchanges. ..

12/15

Introduction

Reachability

Checking synchronizability

Current Work: Monitoring

Monitoring

Centralized Monitoring

For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

13/15

Monitoring

Centralized Monitoring

For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

SR-monitoring: Constructing an automaton that accept
executions that are synchronizable.

13/15

Monitoring

Centralized Monitoring

For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

SR-monitoring: Constructing an automaton that accept
executions that are synchronizable.

Po P1 P2 Harder than it seems.
S0 51 SoS1HSHhh
r

n h

13/15

Monitoring

Centralized Monitoring

For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

SR-monitoring: Constructing an automaton that accept
executions that are synchronizable.
Po P1 P2 Harder than it seems.
So St SpS1nsnn
Il
SoS1s2rnnh

r

n h

13/15

SR-monitoring

SR-monitoring

For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

14/15

SR-monitoring

SR-monitoring

For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p'q(mo) plq(mo)

g q(m P7Q(m2)g

q?p(mo)

q?p(mo)
0 Qq'p g

C)

14/15

SR-monitoring

SR-monitoring

For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

14/15

SR-monitoring

SR-monitoring

For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

14/15

SR-monitoring

SR-monitoring

For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

14/15

SR-monitoring

SR-monitoring

For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p q

14/15

Conclusion

S

R

S

R

o Checking synchronizability PSPACE-complete.

15/15

Conclusion

l S | R | S | R |
I ! I ! I

o Checking synchronizability PSPACE-complete.

® Model checking for a subclass of regular properties under
synchronizability PSPACE-complete.

15/15

Conclusion

l S | R | S | R |

o Checking synchronizability PSPACE-complete.

® Model checking for a subclass of regular properties under
synchronizability PSPACE-complete.

® Existence of k such that CFM is k-synchronizable is
PSPACE-complete.

15/15

Conclusion

l S | R | S | R |

o Checking synchronizability PSPACE-complete.

® Model checking for a subclass of regular properties under
synchronizability PSPACE-complete.

® Existence of k such that CFM is k-synchronizable is
PSPACE-complete.

® SR-Monitoring is Not possible.

Future work:

® Analysing real programs in Rust (internship), finding

restrictions for better complexity.

15/15

Conclusion

l S | R | S | R |

o Checking synchronizability PSPACE-complete.

® Model checking for a subclass of regular properties under
synchronizability PSPACE-complete.

® Existence of k such that CFM is k-synchronizable is
PSPACE-complete.

® SR-Monitoring is Not possible.

Future work:

® Analysing real programs in Rust (internship), finding
restrictions for better complexity.

® Synthesis of CFM from specification given by sets of MSCs.

15/15

Conclusion

l S | R | S | R |

o Checking synchronizability PSPACE-complete.

® Model checking for a subclass of regular properties under
synchronizability PSPACE-complete.

® Existence of k such that CFM is k-synchronizable is
PSPACE-complete.

® SR-Monitoring is Not possible.

Future work:

® Analysing real programs in Rust (internship), finding
restrictions for better complexity.

® Synthesis of CFM from specification given by sets of MSCs.

® Finding subclass of system where SR-monitoring possible.

® Distributed monitoring of synchronizability.

15/15

Conclusion

l S | R | S | R |

o Checking synchronizability PSPACE-complete.

® Model checking for a subclass of regular properties under
synchronizability PSPACE-complete.

® Existence of k such that CFM is k-synchronizable is
PSPACE-complete.

® SR-Monitoring is Not possible.

Future work:

® Analysing real programs in Rust (internship), finding
restrictions for better complexity.

® Synthesis of CFM from specification given by sets of MSCs.

® Finding subclass of system where SR-monitoring possible.

® Distributed monitoring of synchronizability.

THANK YOU

15/15

____Difference of synchronizability _____

Weak-Synchronizability [Di Synchronizability [Delpy et. al.
Giusto et. al. 2020] 2024]
Po P1 P2 Po P1 P2

1/3

____Difference of synchronizability _____

Weak-Synchronizability [Di Synchronizability [Delpy et. al.
Giusto et. al. 2020] 2024]

Weak-synchronizable Not synchronizable

1/3

_ Atomicity: Automata check _____

Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

2/3

_ Atomicity: Automata check _____

Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

Po P1 P2 P3

p2'ps pi'ps pilpo pilp2 pilpo pilp2 ps3lp2

2/3

_ Atomicity: Automata check _____

Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

Po P1 P2 P3

p2'ps pi'ps pilpo pilp2 pilpo pilpe ps3lp2

2/3

_ Atomicity: Automata check _____

Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

Po P1 P2 P3
L | (-]

p2'ps pi'ps pilpo pilp2 pilpo pilpe ps3lp2

2/3

_ Atomicity: Automata check _____

Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

Po P1 P2 P3
T

S~

p2'ps pi'ps pilpo pilp2 pilpo pilpe ps3lp2

B R et

2/3

_ Atomicity: Automata check (cont.) _

p2'ps pi'ps pilpo pilp2 pilpo pilpe pslp2

B R et

Exists path labelling of linear size in the number of processes if
path in augmented msc.

3/3

_ Atomicity: Automata check (cont.) _

p2'ps pilps pilpo pilp2 pilpo pilpe p3lp2

B R et

Exists path labelling of linear size in the number of processes if
path in augmented msc.
A sequence is atomic iff

® For each active process, a path from its last action to its first.

® A cycle contains all active processes.

Atomicity of exchanges

The language of marked sends sequences equivalent to atomic
exchanges is regular (EXPSPACE automaton that can be build on
the fly).

3/3

	Introduction
	Reachability
	Checking synchronizability
	Current Work: Monitoring
	Conclusion
	Appendix
	Appendix

