
An Automata Based Approach for Synchronizable
Mailbox Communication

Romain Delpy, Anca Muscholl, Grégoire Sutre

Univ. of Bordeaux, France

CONCUR 2024, Calgary

S R S R

p0 p1 p2



1 Introduction

2 Reachability

3 Checking synchronizability

4 Current Work: Monitoring

5 Conclusion



Mailbox semantics
p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)

send

receive

Mailbox:
p0

p1
q

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/15



Mailbox semantics
p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1
q

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/15



Mailbox semantics
p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1
q

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/15



Mailbox semantics
p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1
qm1

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/15



Mailbox semantics
p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1
qm1m0

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/15



Mailbox semantics
p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1
qm1m0

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/15



Restriction

State reachability is undecidable [Brand-Zafiropulo 1983]:
Requires restrictions.

Exchange: Sequence of actions with all sends before receives.
Usual for round-based systems (distributed algorithms)

S R S R

Synchronizability
A CFM is synchronizable if every execution can be reordered into a
sequence of exchanges (no message split).

2/15



Restriction

State reachability is undecidable [Brand-Zafiropulo 1983]:
Requires restrictions.

Exchange: Sequence of actions with all sends before receives.
Usual for round-based systems (distributed algorithms)

S R S R

Synchronizability
A CFM is synchronizable if every execution can be reordered into a
sequence of exchanges (no message split).

2/15



Restriction

State reachability is undecidable [Brand-Zafiropulo 1983]:
Requires restrictions.

Exchange: Sequence of actions with all sends before receives.
Usual for round-based systems (distributed algorithms)

S R S R

Synchronizability
A CFM is synchronizable if every execution can be reordered into a
sequence of exchanges (no message split).

2/15



Synchronizability

S R S R

Synchronizability =⇒ State reachability decidable?

Synchronizability decidable?

3/15



1 Introduction

2 Reachability

3 Checking synchronizability

4 Current Work: Monitoring

5 Conclusion



k-synchronizability
k-exchanges [Bouajjani et al. 2018]: Exchanges with at most k
sends.

A CFM is k-synchronizable if every execution can be reordered
into a sequence of k-exchanges (no message split).

S≤ k R S≤ k R

Prev. results [Bouajjani et al. 2018,Di Giusto et al. 2020/2021]
• Reachability is decidable under k-synchronizability (Pspace).
• For fixed k, "is the CFM k-synchronizable?" is Pspace.
• "Is there some k such that the CFM is k-synchronizable?" is

decidable (no complexity).

Warning: Slightly different definition for synchronizability.

4/15



k-synchronizability
k-exchanges [Bouajjani et al. 2018]: Exchanges with at most k
sends.

A CFM is k-synchronizable if every execution can be reordered
into a sequence of k-exchanges (no message split).

S≤ k R S≤ k R

Prev. results [Bouajjani et al. 2018,Di Giusto et al. 2020/2021]
• Reachability is decidable under k-synchronizability (Pspace).
• For fixed k, "is the CFM k-synchronizable?" is Pspace.
• "Is there some k such that the CFM is k-synchronizable?" is

decidable (no complexity).

Warning: Slightly different definition for synchronizability.
4/15



Reachability

Exchange normal form
In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

• p!q0(m0) p!q1(m1)

q0?p(m0) q1?p(m1)

• p0!q(m0) p1!q(m1)

q?p0(m0) q?p1(m1)
Marked send sequence: unmatched sends events are marked.

p0!q(m0) p1!q(m1)

q?p0(m0) q?p1(m1)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] −→ exp-size automaton, Pspace

5/15



Reachability

Exchange normal form
In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

• p!q0(m0) p!q1(m1) q0?p(m0) q1?p(m1)

• p0!q(m0) p1!q(m1) q?p0(m0) q?p1(m1)

Marked send sequence: unmatched sends events are marked.

p0!q(m0) p1!q(m1)

q?p0(m0) q?p1(m1)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] −→ exp-size automaton, Pspace

5/15



Reachability

Exchange normal form
In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

p0!q(m0) p1!q(m1)

q?p0(m0) q?p1(m1)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] −→ exp-size automaton, Pspace

5/15



Reachability

Exchange normal form
In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

p0!q(m0) p1!q(m1)

q?p0(m0) q?p1(m1)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] −→ exp-size automaton, Pspace

5/15



Reachability

Exchange normal form
In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

p0!q(m0) p1!q(m1)

q?p0(m0) q?p1(m1)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] −→ exp-size automaton, Pspace

5/15



Reachability

Exchange normal form
In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

p0!q(m0) p1!q(m1) q?p0(m0) q?p1(m1)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] −→ exp-size automaton, Pspace

5/15



Reachability

Exchange normal form
In mailbox semantics, every exchange is equivalent to the sequence
where receives are in the same order as the sends.

Marked send sequence: unmatched sends events are marked.

p0!q(m0) p1!q(m1) q?p0(m0) q?p1(m1)

Reachability algorithm: Guess the middle global state [Di Giusto
et al. 2020] −→ exp-size automaton, Pspace

5/15



1 Introduction

2 Reachability

3 Checking synchronizability

4 Current Work: Monitoring

5 Conclusion



Checking synchronizability
What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:

p1!p0(m0) p1!p2(m1) p2?p1(m1) p2!p1(m2) p1?p2(m2) p0!p1(m3) p0?p1(m0)

p0 p1 p2

m0
m1

m2

m3

• atomic sequence
• a receive before a send on some

process

Removing last action makes it synchronizable!
s0

r0

Need to check a path going from first
send action s0 through a receive then a
send and ending before the future
receive r0

6/15



Checking synchronizability
What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:
p1!p0(m0) p1!p2(m1) p2?p1(m1) p2!p1(m2) p1?p2(m2) p0!p1(m3) p0?p1(m0)

p0 p1 p2

m0
m1

m2

m3

• atomic sequence
• a receive before a send on some

process

Removing last action makes it synchronizable!
s0

r0

Need to check a path going from first
send action s0 through a receive then a
send and ending before the future
receive r0

6/15



Mailbox MSC

Mailbox

Message Sequence Charts (MSC)
Partial-order representation of executions:
process order + message arcs

+ mailbox order

.
Two executions are equivalent if they have the same MSC.

p0 q p1
m0

m1m2

s0

s1

Two sends to the same process, s0 and s1, are mailbox-ordered if:
• s0 is matched (with r0)
• s1 is unmatched, or is matched with r1 and r0 < r1

7/15



Mailbox MSC
Mailbox Message Sequence Charts (MSC)
Partial-order representation of executions:
process order + message arcs + mailbox order.
Two executions are equivalent if they have the same MSC.

p0 q p1
m0

m1m2

s0

s1

Two sends to the same process, s0 and s1, are mailbox-ordered if:
• s0 is matched (with r0)
• s1 is unmatched, or is matched with r1 and r0 < r1

7/15



Checking synchronizability
What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:
p1!p0(m0) p1!p2(m1) p2?p1(m1) p2!p1(m2) p1?p2(m2) p0!p1(m3) p0?p1(m0)

p0 p1 p2

m0
m1

m2

m3

• atomic sequence
• a receive before a send on some

process

Removing last action makes it synchronizable!
s0

r0

Need to check a path going from first
send action s0 through a receive then a
send and ending before the future
receive r0

8/15



Checking synchronizability
What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:
p1!p0(m0) p1!p2(m1) p2?p1(m1) p2!p1(m2) p1?p2(m2) p0!p1(m3) p0?p1(m0)

p0 p1 p2

m0
m1

m2

m3

• atomic sequence
• a receive before a send on some

process

Removing last action makes it synchronizable!
s0

r0

Need to check a path going from first
send action s0 through a receive then a
send and ending before the future
receive r0

8/15



Atomicity
A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

• message p0!p1(m) p1?p0(m) atomic
• s0 s1 r1 r0

≡ s0 r0 s1 r1 non-atomic

p0 p1 p2 p3

s0 r0 s1 r1

• concurrent messages atomic

p0 p1

9/15



Atomicity
A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

• message p0!p1(m) p1?p0(m) atomic

• s0 s1 r1 r0

≡ s0 r0 s1 r1 non-atomic

p0 p1 p2 p3

s0 r0 s1 r1

• concurrent messages atomic

p0 p1

9/15



Atomicity
A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

• message p0!p1(m) p1?p0(m) atomic
• s0 s1 r1 r0

≡ s0 r0 s1 r1 non-atomic

p0 p1 p2 p3

s0 r0 s1 r1

• concurrent messages atomic

p0 p1

9/15



Atomicity
A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

• message p0!p1(m) p1?p0(m) atomic
• s0 s1 r1 r0 ≡ s0 r0 s1 r1 non-atomic

p0 p1 p2 p3

s0 r0 s1 r1

• concurrent messages atomic

p0 p1

9/15



Atomicity
A sequence is atomic if no equivalent sequence can be divided into
smaller sequences.

• message p0!p1(m) p1?p0(m) atomic
• s0 s1 r1 r0 ≡ s0 r0 s1 r1 non-atomic

p0 p1 p2 p3

s0 r0 s1 r1

• concurrent messages atomic

p0 p1

9/15



Atomicity: A graphical approach

p0 p1

Graph: added backward
message arcs

A sequence is atomic iff its graph is
strongly connected.

Atomicity of exchanges
The language of marked send sequences of atomic exchanges is
regular (exp-size automaton built on-the-fly, Pspace).

10/15



Atomicity: A graphical approach

p0 p1

Graph: added backward
message arcs

A sequence is atomic iff its graph is
strongly connected.

Atomicity of exchanges
The language of marked send sequences of atomic exchanges is
regular (exp-size automaton built on-the-fly, Pspace).

10/15



Atomicity: A graphical approach

p0 p1

Graph: added backward
message arcs

A sequence is atomic iff its graph is
strongly connected.

Atomicity of exchanges
The language of marked send sequences of atomic exchanges is
regular (exp-size automaton built on-the-fly, Pspace).

10/15



Atomicity: A graphical approach

p0 p1

Graph: added backward
message arcs

A sequence is atomic iff its graph is
strongly connected.

Atomicity of exchanges
The language of marked send sequences of atomic exchanges is
regular (exp-size automaton built on-the-fly, Pspace).

10/15



Atomicity: A graphical approach

p0 p1

Graph: added backward
message arcs

A sequence is atomic iff its graph is
strongly connected.

Atomicity of exchanges
The language of marked send sequences of atomic exchanges is
regular (exp-size automaton built on-the-fly, Pspace).

10/15



Atomicity: A graphical approach

p0 p1

Graph: added backward
message arcs

A sequence is atomic iff its graph is
strongly connected.

Atomicity of exchanges
The language of marked send sequences of atomic exchanges is
regular (exp-size automaton built on-the-fly, Pspace).

10/15



Checking synchronizability
What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:
p0 p1 p2

m0
m1

m2

m3

• atomic sequence
• a receive before a send on some

process

Removing last action makes it synchronizable!
s0

r0

Need to check a path going from first
send action s0 through a receive then a
send and ending before the future
receive r0

11/15



Checking synchronizability
What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:
p0 p1 p2

m0
m1

m2

m3

• atomic sequence
• a receive before a send on some

process

Removing last action makes it synchronizable!
s0

r0

Need to check a path going from first
send action s0 through a receive then a
send and ending before the future
receive r0

11/15



Checking synchronizability
What does not synchronizable mean?

Execution that cannot be reordered into a sequence of exchanges:
p0 p1 p2

m0
m1

m2

m3

• atomic sequence
• a receive before a send on some

process

Removing last action makes it synchronizable!
s0

r0

Need to check a path going from first
send action s0 through a receive then a
send and ending before the future
receive r0

11/15



Path between exchanges
p0 p1 p2

s0

r0

Need a way to connect path between
atomic exchanges

in/out-points: out-point at end of
exchange, in-point at start of next
exchange, there must be an order
between out-point and in-point.

p1 p2 p3 p4

s0
r0

Not always first send that
gets "unmatched" from
last action.
Need to check for validity
while guessing the
sequence of exchanges. . .

12/15



Path between exchanges
p0 p1 p2

s0

r0

Need a way to connect path between
atomic exchanges
in/out-points: out-point at end of
exchange, in-point at start of next
exchange, there must be an order
between out-point and in-point.

p1 p2 p3 p4

s0
r0

Not always first send that
gets "unmatched" from
last action.
Need to check for validity
while guessing the
sequence of exchanges. . .

12/15



Path between exchanges
p0 p1 p2

s0

r0

Need a way to connect path between
atomic exchanges
in/out-points: out-point at end of
exchange, in-point at start of next
exchange, there must be an order
between out-point and in-point.

p1 p2 p3 p4

s0
r0

Not always first send that
gets "unmatched" from
last action.
Need to check for validity
while guessing the
sequence of exchanges. . .

12/15



Path between exchanges
p0 p1 p2

s0

r0

Need a way to connect path between
atomic exchanges
in/out-points: out-point at end of
exchange, in-point at start of next
exchange, there must be an order
between out-point and in-point.

p1 p2 p3 p4

s0
r0

Not always first send that
gets "unmatched" from
last action.
Need to check for validity
while guessing the
sequence of exchanges. . .

Synchronizability
Checking if a given CFM is synchronizable for mailbox semantics is
Pspace-complete

12/15



1 Introduction

2 Reachability

3 Checking synchronizability

4 Current Work: Monitoring

5 Conclusion



Monitoring

Centralized Monitoring
For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

SR-monitoring: Constructing an automaton that accept
executions that are synchronizable.

p0 p1 p2
s0

r1

s1

r0

s2 r2

Harder than it seems.
s0 s1 r1 s2 r2 r0≡

s0 s1 s2 r1 r2 r0

13/15



Monitoring

Centralized Monitoring
For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

SR-monitoring: Constructing an automaton that accept
executions that are synchronizable.

p0 p1 p2
s0

r1

s1

r0

s2 r2

Harder than it seems.
s0 s1 r1 s2 r2 r0≡

s0 s1 s2 r1 r2 r0

13/15



Monitoring

Centralized Monitoring
For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

SR-monitoring: Constructing an automaton that accept
executions that are synchronizable.

p0 p1 p2
s0

r1

s1

r0

s2 r2

Harder than it seems.
s0 s1 r1 s2 r2 r0

≡

s0 s1 s2 r1 r2 r0

13/15



Monitoring

Centralized Monitoring
For a CFM A and a property P, can we construct an automaton B
accepting executions of A respecting P?

SR-monitoring: Constructing an automaton that accept
executions that are synchronizable.

p0 p1 p2
s0

r1

s1

r0

s2 r2

Harder than it seems.
s0 s1 r1 s2 r2 r0≡

s0 s1 s2 r1 r2 r0

13/15



SR-monitoring
SR-monitoring
For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p:

p!q(m0)

p?q(m1) p?q(m2)

p!q(m0)

q:
q!p(m1) q!p(m2)

q?p(m0) q?p(m0)

14/15



SR-monitoring
SR-monitoring
For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p:

p!q(m0)

p?q(m1) p?q(m2)

p!q(m0)

q:
q!p(m1) q!p(m2)

q?p(m0) q?p(m0)

14/15



SR-monitoring
SR-monitoring
For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p:

p!q(m0)

p?q(m1) p?q(m2)

p!q(m0)

q:
q!p(m1) q!p(m2)

q?p(m0) q?p(m0)

p q

14/15



SR-monitoring
SR-monitoring
For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p:

p!q(m0)

p?q(m1) p?q(m2)

p!q(m0)

q:
q!p(m1) q!p(m2)

q?p(m0) q?p(m0)

p q

14/15



SR-monitoring
SR-monitoring
For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p:

p!q(m0)

p?q(m1) p?q(m2)

p!q(m0)

q:
q!p(m1) q!p(m2)

q?p(m0) q?p(m0)

p q

14/15



SR-monitoring
SR-monitoring
For a CFM A, it is not possible to monitor the property "is the
execution of A synchronizable".

p:

p!q(m0)

p?q(m1) p?q(m2)

p!q(m0)

q:
q!p(m1) q!p(m2)

q?p(m0) q?p(m0)

p q

14/15



Conclusion

S R S R
• Checking synchronizability Pspace-complete.

• Model checking for a subclass of regular properties under
synchronizability Pspace-complete.

• Existence of k such that CFM is k-synchronizable is
Pspace-complete.

• SR-Monitoring is Not possible.
Future work:

• Analysing real programs in Rust (internship), finding
restrictions for better complexity.

• Synthesis of CFM from specification given by sets of MSCs.
• Finding subclass of system where SR-monitoring possible.
• Distributed monitoring of synchronizability.

THANK YOU

15/15



Conclusion

S R S R
• Checking synchronizability Pspace-complete.
• Model checking for a subclass of regular properties under

synchronizability Pspace-complete.

• Existence of k such that CFM is k-synchronizable is
Pspace-complete.

• SR-Monitoring is Not possible.
Future work:

• Analysing real programs in Rust (internship), finding
restrictions for better complexity.

• Synthesis of CFM from specification given by sets of MSCs.
• Finding subclass of system where SR-monitoring possible.
• Distributed monitoring of synchronizability.

THANK YOU

15/15



Conclusion

S R S R
• Checking synchronizability Pspace-complete.
• Model checking for a subclass of regular properties under

synchronizability Pspace-complete.
• Existence of k such that CFM is k-synchronizable is

Pspace-complete.

• SR-Monitoring is Not possible.
Future work:

• Analysing real programs in Rust (internship), finding
restrictions for better complexity.

• Synthesis of CFM from specification given by sets of MSCs.
• Finding subclass of system where SR-monitoring possible.
• Distributed monitoring of synchronizability.

THANK YOU

15/15



Conclusion

S R S R
• Checking synchronizability Pspace-complete.
• Model checking for a subclass of regular properties under

synchronizability Pspace-complete.
• Existence of k such that CFM is k-synchronizable is

Pspace-complete.
• SR-Monitoring is Not possible.

Future work:
• Analysing real programs in Rust (internship), finding

restrictions for better complexity.

• Synthesis of CFM from specification given by sets of MSCs.
• Finding subclass of system where SR-monitoring possible.
• Distributed monitoring of synchronizability.

THANK YOU

15/15



Conclusion

S R S R
• Checking synchronizability Pspace-complete.
• Model checking for a subclass of regular properties under

synchronizability Pspace-complete.
• Existence of k such that CFM is k-synchronizable is

Pspace-complete.
• SR-Monitoring is Not possible.

Future work:
• Analysing real programs in Rust (internship), finding

restrictions for better complexity.
• Synthesis of CFM from specification given by sets of MSCs.

• Finding subclass of system where SR-monitoring possible.
• Distributed monitoring of synchronizability.

THANK YOU

15/15



Conclusion

S R S R
• Checking synchronizability Pspace-complete.
• Model checking for a subclass of regular properties under

synchronizability Pspace-complete.
• Existence of k such that CFM is k-synchronizable is

Pspace-complete.
• SR-Monitoring is Not possible.

Future work:
• Analysing real programs in Rust (internship), finding

restrictions for better complexity.
• Synthesis of CFM from specification given by sets of MSCs.
• Finding subclass of system where SR-monitoring possible.
• Distributed monitoring of synchronizability.

THANK YOU

15/15



Conclusion

S R S R
• Checking synchronizability Pspace-complete.
• Model checking for a subclass of regular properties under

synchronizability Pspace-complete.
• Existence of k such that CFM is k-synchronizable is

Pspace-complete.
• SR-Monitoring is Not possible.

Future work:
• Analysing real programs in Rust (internship), finding

restrictions for better complexity.
• Synthesis of CFM from specification given by sets of MSCs.
• Finding subclass of system where SR-monitoring possible.
• Distributed monitoring of synchronizability.

THANK YOU
15/15



Difference of synchronizability

Weak-Synchronizability [Di
Giusto et. al. 2020]

p0 p1 p2

Weak-synchronizable

Synchronizability [Delpy et. al.
2024]

p0 p1 p2

Not synchronizable

1/3



Difference of synchronizability

Weak-Synchronizability [Di
Giusto et. al. 2020]

p0 p1 p2

Weak-synchronizable

Synchronizability [Delpy et. al.
2024]

p0 p1 p2

Not synchronizable

1/3



Atomicity: Automata check
Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

p0 p1 p2 p3

p2!p3 p1!p3 p1!p0 p1!p2 p1!p0 p1!p2 p3!p2

3 4 1 2

2/3



Atomicity: Automata check
Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

p0 p1 p2 p3

p2!p3 p1!p3 p1!p0 p1!p2 p1!p0 p1!p2 p3!p2

3 4 1 2

2/3



Atomicity: Automata check
Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

p0 p1 p2 p3

p2!p3 p1!p3 p1!p0 p1!p2 p1!p0 p1!p2 p3!p2

3 4 1 2

2/3



Atomicity: Automata check
Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

p0 p1 p2 p3

p2!p3 p1!p3 p1!p0 p1!p2 p1!p0 p1!p2 p3!p2

3 4 1 2

2/3



Atomicity: Automata check
Need a bounded technique: Path labelling: Ordered list of
elements in the marked sends sequence displaying a path.

p0 p1 p2 p3

p2!p3 p1!p3 p1!p0 p1!p2 p1!p0 p1!p2 p3!p2

3 4 1 2

2/3



Atomicity: Automata check (cont.)

p2!p3 p1!p3 p1!p0 p1!p2 p1!p0 p1!p2 p3!p2

3 4 1 2

Exists path labelling of linear size in the number of processes if
path in augmented msc.

A sequence is atomic iff
• For each active process, a path from its last action to its first.
• A cycle contains all active processes.

Atomicity of exchanges
The language of marked sends sequences equivalent to atomic
exchanges is regular (Expspace automaton that can be build on
the fly).

3/3



Atomicity: Automata check (cont.)

p2!p3 p1!p3 p1!p0 p1!p2 p1!p0 p1!p2 p3!p2

3 4 1 2

Exists path labelling of linear size in the number of processes if
path in augmented msc.
A sequence is atomic iff

• For each active process, a path from its last action to its first.
• A cycle contains all active processes.

Atomicity of exchanges
The language of marked sends sequences equivalent to atomic
exchanges is regular (Expspace automaton that can be build on
the fly).

3/3


	Introduction
	Reachability
	Checking synchronizability
	Current Work: Monitoring
	Conclusion
	Appendix
	Appendix


