Verification of population protocols with unordered data

Steffen van Bergerem

Roland Guttenberg

Sandra Kiefer

Corto Mascle (thanks Corto for the slides!)

Nicolas Waldburger

Chana Weil-Kennedy

Published at ICALP'24

MPs want to know whether a majority of them are in favour of a law proposal.

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion.

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN + PY \rightarrow AN + PN$ $PN + PY \rightarrow PN + PN$

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $AY \qquad AY$ $AY \qquad AY$ $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN \qquad AN$ AY $AN + PY \rightarrow AN + PN$ $PN + PY \rightarrow PN + PN$ AY

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $AY \qquad AY$ $AY \qquad AY$ $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN \qquad PN$ $AN \qquad PN$ $PN + PY \rightarrow PN + PN$ $PY \qquad AN$

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN + PY \rightarrow AN + PN$ $PN + PY \rightarrow PN + PN$ PY AY + PY + PN + PN PY

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN + PY \rightarrow AN + PN$ $PN + PY \rightarrow PN + PN$

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $\begin{array}{ccc}
PY & PN \\
AY + AN \rightarrow PY + PN \\
AY + PN \rightarrow AY + PY \\
AN + PY \rightarrow AN + PN \\
PN + PY \rightarrow PN + PN \\
\end{array}$

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $PY \qquad PN$ $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN + PY \rightarrow AN + PN$ $PN \qquad PN$ $PY \qquad PN$ $PY \qquad PN$ $PY \qquad PY$

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN + PY \rightarrow AN + PN$ $PN + PY \rightarrow PN + PN$

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

PY PY

 $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN + PY \rightarrow AN + PN$ $PN + PY \rightarrow PN + PN$

MPs want to know whether a majority of them are in favour of a law proposal.

Four states: *AY*, *PY*, *AN*, *PN*: Active/Passive, Yes/No Initially everyone is in the active state corresponding to their opinion. Interactions:

 $AY + AN \rightarrow PY + PN$ $AY + PN \rightarrow AY + PY$ $AN + PY \rightarrow AN + PN$ $PN + PY \rightarrow PN + PN$

PY PY AY PY

PY

PY

Population Protocols [Angluin, Aspnes, Diamadi, Fischer, Peralta, PODS 2004]

Finite set of states Q, with set $I \subseteq Q$ of *initial states*. States are partitioned in two opinions $Q = Q_{Yes} \sqcup Q_{No}$ Interactions $\Delta \subseteq Q^2 \times Q^2$.

Population Protocols [Angluin, Aspnes, Diamadi, Fischer, Peralta, PODS 2004]

Finite set of states Q, with set $I \subseteq Q$ of *initial states*. States are partitioned in two opinions $Q = Q_{Yes} \sqcup Q_{No}$ Interactions $\Delta \subseteq Q^2 \times Q^2$.

- Random pairwise interactions
- Stable consensus is reached when everyone agrees on Yes or No and no one can ever change their mind

A protocol is **well-specified** if from all initial configuration, either a Yes-consensus is reach with proba 1, or a No-consensus is reached with proba 1.

A protocol is **well-specified** if from all initial configuration, either a Yes-consensus is reach with proba 1, or a No-consensus is reached with proba 1.

The **predicate** computed by the protocol is then the set of initial configurations from which we reach a Yes-consensus.

Which predicates can be computed by population protocols?

Which predicates can be computed by population protocols? 🗸

Theorem [Angluin, Aspnes, Eisenstat, Ruppert 2007]

A predicate is computable by a population protocol iff it is Presburger-definable.

Which predicates can be computed by population protocols? 🗸

Theorem [Angluin, Aspnes, Eisenstat, Ruppert 2007]

A predicate is computable by a population protocol iff it is Presburger-definable.

Can we check if a population protocol is well-specified?

Which predicates can be computed by population protocols? 🗸

Theorem [Angluin, Aspnes, Eisenstat, Ruppert 2007]

A predicate is computable by a population protocol iff it is Presburger-definable.

Can we check if a population protocol is well-specified? 🗸

Theorem [Esparza, Ganty, Leroux, Majumdar 2015]

Checking if a population protocol is well-specified is **decidable** but as hard as Petri net reachability (Ackermann-complete).

Population Protocols with Unordered Data

Defined by Michael Blondin and François Ladouceur [ICALP'23] Each agent carries a permanent datum taken from an infinite set \mathbb{D} . Interactions: $\Delta \subseteq Q^2 \times \{=, \neq\} \rightarrow Q^2$ Interactions take into account whether the two agents have = or \neq data.

$$\begin{array}{c} q_0, x \\ \\ q_2, y \end{array} \right\} \xrightarrow{x \neq y} \begin{cases} q_1, x \\ \\ q_3, y \end{cases}$$

Does some datum have more agents than all other combined?

Does some datum have more agents than all other combined?

Theorem [Blondin, Ladouceur ICALP'23]

There is a PPUD deciding the majority predicate.

Does some datum have more agents than all other combined?

Theorem [Blondin, Ladouceur ICALP'23]

There is a PPUD deciding the majority predicate.

- Pair agents of distinct data until a candidate majority datum emerges
- Inform everyone whether they are part of the candidate datum or not
- Apply binary majority protocol

Does some datum have more agents than all other combined?

Theorem [Blondin, Ladouceur ICALP'23]

There is a PPUD deciding the majority predicate.

- Pair agents of distinct data until a candidate majority datum emerges
- Inform everyone whether they are part of the candidate datum or not
- Apply binary majority protocol

Open problem

What are the predicates computed by PPUD?

Given a PPUD, is it well-specified?

Given a PPUD, is it well-specified?

Theorem [Us, ICALP'24]

It is undecidable to check whether a PPUD is well-specified.

stock

► Simulate a 2-counter machine with zero-tests.

counter 1

counter 2

sink

Given a PPUD, is it well-specified?

Theorem [Us, ICALP'24]

It is undecidable to check whether a PPUD is well-specified.

► Simulate a 2-counter machine with zero-tests.

counter 2

sink

Given a PPUD, is it well-specified?

Theorem [Us, ICALP'24]

It is undecidable to check whether a PPUD is well-specified.

► Simulate a 2-counter machine with zero-tests.

Given a PPUD, is it well-specified?

Theorem [Us, ICALP'24]

It is undecidable to check whether a PPUD is well-specified.

► Simulate a 2-counter machine with zero-tests.

Immediate Observation

A population protocol has the **Immediate Observation** property if in every interaction one of the two agents keeps the same state.

Immediate Observation

A population protocol has the **Immediate Observation** property if in every interaction one of the two agents keeps the same state.

$$\begin{array}{c} q_0, x \\ q_1, y \end{array} \right\} \xrightarrow{x \neq y} \begin{cases} q_0, x & \text{``observed agent''} \\ q_2, y \end{cases}$$

Immediate Observation

A population protocol has the **Immediate Observation** property if in every interaction one of the two agents keeps the same state.

$$\begin{array}{c} q_0, x \\ q_1, y \end{array} \right\} \xrightarrow[x \neq y]{} \left\{ \begin{array}{c} q_0, x & \text{``observed agent''} \\ q_2, y & \end{array} \right.$$

Theorem (Esparza, Ganty, Majumdar, Weil-Kennedy 2018)

Well-specification is PSPACE-complete for Immediate-Observation population protocols **without data**.

Interval predicate = Boolean combination of

"At least 3 distinct data with between 1 and 3 agents in state q and 4 agents in state q'''.

$$\exists d_1, d_2, d_3, \bigwedge_{i=1}^3 (1 \leq \#(q, d_i) \leq 3) \land (4 \leq \#(q, d_i))$$

Interval predicate = Boolean combination of

"At least 3 distinct data with between 1 and 3 agents in state q and 4 agents in state q'''.

$$\exists d_1, d_2, d_3, \bigwedge_{i=1}^3 (1 \leq \#(q, d_i) \leq 3) \land (4 \leq \#(q, d_i))$$

Theorem [Blondin, Ladouceur 2023]

The predicates computed by IOPPUD are exactly interval predicates.

Theorem [Us, ICALP'24]

Well-specification is decidable for IOPPUD.

Theorem [Us, ICALP'24]

Well-specification is decidable for IOPPUD.

Key lemma

Given a set of configurations C described by an interval predicate, we can compute interval predicates expressing $Pre^*(C)$ and $Post^*(C)$.

Theorem [Us, ICALP'24]

Well-specification is decidable for IOPPUD.

Key lemma

Given a set of configurations C described by an interval predicate, we can compute interval predicates expressing $Pre^*(C)$ and $Post^*(C)$.

Copycat: in an IOPPUD, if an agent with datum d goes from q_1 to q_2 then we can send as many agents with datum d as we want from q_1 to q_2 : the observed agent is still here.

Theorem [Us, ICALP'24]

Well-specification is decidable for IOPPUD.

Key lemma

Given a set of configurations C described by an interval predicate, we can compute interval predicates expressing $Pre^*(C)$ and $Post^*(C)$.

Copycat: in an IOPPUD, if an agent with datum d goes from q_1 to q_2 then we can send as many agents with datum d as we want from q_1 to q_2 : the observed agent is still here. Using this fact, we prove that we can rearrange any run so that

- each datum only has a limited number of agents that get observed during the run.
- only a limited number of data have agents that are observed by other data.

IOPPUD Generalised Reachability Expressions:

```
E ::= Interval Predicate | E \cup E | \overline{E} | Pre^{*}(E) | Post^{*}(E)
```

Question: given a GRE *E*, do we have $\llbracket E \rrbracket_{\mathcal{P}}$?

Generalised Reachability Expressions:

E ::= Interval Predicate $| E \cup E | \overline{E} | Pre^{*}(E) | Post^{*}(E)$

Question: given a GRE E, do we have $\llbracket E \rrbracket_{\mathcal{P}}$? Example: The protocol is well-specified if and only if

 $\Gamma_0 \cap \mathit{Pre}^*(\overline{\mathit{Pre}^*(\mathsf{Stable}_{\mathit{Yes}})}) \cap \mathit{Pre}^*(\overline{\mathit{Pre}^*(\mathsf{Stable}_{\mathit{No}})}) = \emptyset$

 $Stable_b := Pre^*(\overline{Consensus_b})$: stable consensus on opinion b.

Generalised Reachability Expressions:

E ::= Interval Predicate $| E \cup E | \overline{E} | Pre^{*}(E) | Post^{*}(E)$

Question: given a GRE E, do we have $\llbracket E \rrbracket_{\mathcal{P}}$? Example: The protocol is well-specified if and only if

$$\Gamma_0 \cap \mathit{Pre}^*(\overline{\mathit{Pre}^*(\mathsf{Stable}_{\mathit{Yes}})}) \cap \mathit{Pre}^*(\overline{\mathit{Pre}^*(\mathsf{Stable}_{\mathit{No}})}) = \emptyset$$

 $Stable_b := Pre^*(\overline{Consensus_b})$: stable consensus on opinion b.

Theorem

Given a GRE *E*, we can compute an interval predicate for $\llbracket E \rrbracket_{\mathcal{P}}$.

Corollary

Given a GRE *E*, we can check if $\llbracket E \rrbracket_{\mathcal{P}} = \emptyset$.

Many problems can be reduced to the emptiness of a GRE:

Well-specification

= The protocol computes something

Many problems can be reduced to the emptiness of a GRE:

Well-specification

= The protocol computes something

Correctness

= The protocol computes predicate P

Many problems can be reduced to the emptiness of a GRE:

Well-specification

= The protocol computes something

Correctness

= The protocol computes predicate P

Visible termination

= all consensus are stable consensus

Many problems can be reduced to the emptiness of a GRE:

Well-specification

= The protocol computes something

Correctness

= The protocol computes predicate P

- Visible termination
 - = all consensus are stable consensus
- Home-space problem
 - = Every fair run eventually reaches set of configurations H

Emptiness of Generalised Reachability Expressions is:

In EXPSPACE

 \rightarrow By controlling the growth of coefficients when translating GRE to Interval Predicates.

NEXPTIME-hard

 \rightarrow By encoding the tiling of an exponential grid.

Characterise predicates computed by PPUD

Open problems

- Characterise predicates computed by PPUD
- Close the complexity gap for GRE emptiness in IOPPUD: NEXPTIME EXPSPACE

Open problems

- Characterise predicates computed by PPUD
- Close the complexity gap for GRE emptiness in IOPPUD: NEXPTIME EXPSPACE
- Close the complexity gap for well-specification in IOPPUD: PSPACE EXPSPACE

Open problems

- Characterise predicates computed by PPUD
- Close the complexity gap for GRE emptiness in IOPPUD: NEXPTIME EXPSPACE
- Close the complexity gap for well-specification in IOPPUD: PSPACE EXPSPACE

Thanks!