Counting Abstraction for
the Verification of

Structured Parameterized Networks

Neven Villani

Marius Bozga, Radu losif, Arnaud Sangnier

2024-10-11

1. The setting

Goals

Prove correctness of distributed protocols (e.g. mutex, leader election)
 encoded as a network of communicating processes

. system of arbitrary size

o fully automated analysis

Difficulty:
« general problem is undecidable

o techniques to handle finitely many processes with infinite behaviors
do not immediately translate to infinitely many processes

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Contribution

Reduction technique
 from
» infinite system
» finite behaviors (1-safe Petri nets)
» reachability problem
o to
» finite systems
» infinite behaviors (Petri nets)
» coverability problem

with support for complex topologies,
fully automated, fully implemented.

Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

client '.

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Token ring with resource

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Some undesirable configurations

Safety: only one process at a time claims to own the unique resources

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Parameterization

Requirements

. an encoding of the implementation of processes

a description of the interactions and architectures of arbitrary size

a specification language for safety properties

approximation techniques that work on infinite families

a decidable problem to reduce to

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

2. Implementation

Lock

Neven Villani

send

recv

Counting Abstraction, Network Gramr

&

2024-10-11

Lock

send

Neven Villani

2

€CV|

emit “send*

—

emit “recv*

<_

Counting Abstraction, Network Grammars

send

2

€CV

2024-10-11

Client

Neven Villani

left

acq

oy

rel

Counting Abstraction, Network Grammars

right

2024-10-11

3. Interactions

Interactions through disjoint composition

left rightr - left rightr-| left right

acq rel

send recv

0 :

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Interactions through disjoint composition

left X] x y [y right

acq rel

acq rel

0 :

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Interactions through disjoint composition

left X y right

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Interactions through disjoint composition

left X y right

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Interactions through disjoint composition

left X y right

s # o & £/ 72

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Interactions through disjoint composition

left X y right

£/ 72 £/ ®)’ 1/ 72

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Interactions through disjoint composition

left X y right

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

4. Architecture

Structure: inductive step

Neven Villani

right

send H

[~
recv

left

Counting Abstraction, Network Grammars

2024-10-11

Structure: inductive step

Neven Villani

right

send H

[~
recv

left

acq

rel

=

right

left

Counting Abstraction, Network Grammars

2024-10-11

Structure: inductive step

Neven Villani

right

send H

CcoO

Py

left

0

N recy /
acq |[[\acq
[l [
rel ||/ rel
mid

Counting Abstraction, Network Grammars

rename

2024-10-11

Structure: inductive step

Neven Villani

right

Counting Abstraction, Network Grammars

compose

2024-10-11

Structure represented by a grammar

X — compose(

rename; ¢, v mig (Copysendﬂ»acq,recvwrel (X)))

rena merightl—)mid (pI‘OC)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Structure represented by a grammar

/
Sys » cOmpose (X7 rena meleftl—)right, righti—left (pI‘OC))
X — compose(

rename; ¢, v mig (CO pysendaf)acq,recvw%rel (X)) ’

rena merightl—)mid (pI’OC)

)

X — Compose(Copysendwacq,recvwrel(IOCk)7 pI‘OC)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Representable architectures

These manipulations are encoded in a form similar to CFG for graphs.
. language of a grammar is an (infinite) set of Petri nets
- many families of networks of bounded tree-width are representable

 missing: grids, eliques

./ \. . / \. ./.,- \.\.\. . go ///. .,-\\./\.\ ./::‘-‘ ¢ ,?;:-.-\. A N—
2WAWATES IR/ AL s
AAANAAANN 77N e S

°
|
3
o
[
°
°
\
°

Neven Villani

Counting Abstraction, Network Grammars

2024-10-11

5. Safety specification

Safety properties
#(,7): number of tokens on ,”

~ number of clients who claim to own the key

If any size of the system has a reachable configuration with
#(,7) + #(&0) > 1, there is a bug in the specification.

Proving safety =~ solving a reachability problem in an infinite family of

Petri nets

Other undesirable configurations: #(&) + # (&) > 1

Counting Abstraction, Network Grammars 2024-10-11

Expressible properties

- mutual exclusion

“at most k processes can enter a critical section simultaneously”
e uniqueness

“the entire system contains at most k instances of a resource”
« unreachability

“no process can reach a bad state”

Examples: leader election, locks and semaphores, dining philosophers, ...

Missing: liveness, deadloektreedem

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

6. Verification

Using an abstraction

(Implementation) n (Architecture) n (Specification)

Petri nets Grammar I' Formula ¢

» Do all systems generated by I' avoid bad configurations ¢?
(written I' £)

Undecidable !

Counting Abstraction, Network Grammars 2024-10-11

Using an abstraction

(Implementation) n (Abstract architecture) n (Specification)

Petri nets Grammar o() Formula ¢

~» Do all systems generated by a(I') avoid bad configurations ¢?
(written (") ¥)

 «(I") finite — coverability solvable on a(T")
 « should preserve violations of safety properties

Counting Abstraction, Network Grammars 2024-10-11

Counting abstraction (folding)

Counting abstraction (folding)

Counting abstraction (folding)

Counting abstraction (folding)

Implementing «

e

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Implementing «

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Implementing «

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

What does client” look like ?

left . right

t (l(\R /D t (l(\R /Q H (l(\P /D

acq rel acq rel acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

What does client” look like ?

/@?\

left right

£l #°

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Practical computation of client?

Find a least fixed point of the equation

(A
e N
" 7

acq rel \ acq rel acq rel /

left ? rightf f 0 | d left

right

In practice: bottoms-up application of the rules of the grammar
(finite domain).

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Initial marking

/
Sys » cOmpose (X7 rena meleftl—)right, righti—left (pI‘OC))

X — compose(

rename; ¢, v mig (CO pysendaf)acq,recvw%rel (X)) ’

rena merightl—)mid (pI’OC)

)

X — compose(CopYqendaracy, (lock), proc)

recvasrel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Initial marking

Sys —» X proc’

X —

proc

X — lock), proc

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Initial marking
From the grammar

Sys — X, proc'
X — X, proc
X — lock, proc

From the initial states

proc' — Y
proc — ()
lock — &

Counting Abstraction, Network Grammars

2024-10-11

Soundness

Counting abstraction is sound:
o if I' contains undesirable behaviors then «(I") too
 contrapositive:

if a(I") ¥ ¢ (abstract system is safe)

then I' ¥ ¢ (concrete system is safe).

Reciprocal implication does not hold
 undecidability
. false positives

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Automation loop

I' £

<7

no

Neven Villani

(soundness)

|input

L', o

J]abstraction

<t

Counting Abstraction, Network Grammars

yes

— refinement

2024-10-11

Implementation

Input: text file describing the grammar and the safety properties
 computes the abstraction

. offloads the coverability problem to a specialized solver
e ~ 7500 lines of OCaml

This example:
« specification in 40 lines
. 4 safety properties in 200ms

Other case studies:
15 examples, 7 architectures, 27 safety properties

Counting Abstraction, Network Grammars 2024-10-11

7. Refinement

A false positive

@a a a

fold

b > 1 is not reachable b > 1 is reachable

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Contracts

 formula that restricts firing sequences

« boolean contract: =t means “no admissible firing sequence fires ¢t”

« problem becomes reachability through only firing sequences that
satisfy the contract

Contract:

A/®Q\ (acq V right = left) A (rel = acq)

left right

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Composing contracts

« Finite domain (boolean formulas, bounded number of variables)
 If C';,C, are contracts for N;,N,,

then C; A Cj is a contract for compose(Ny, IV,).
- Fixed point is computable.

The construction is lossy, but can be more accurate than folding without
contracts.

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Conclusion

o technique to reduce infinite systems to finite instances
e in part architecture-agnostic
« observed efficient in practice

Future work

. explore completeness

 improve refinements

 encode more complex systems (infinite behaviors, reconfigurations)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

8. Appendix

Full grammar

term lock(send, recv) ::= {
(emp) -> [recv] -> (locked) -> [send] -> (emp);
token (locked);

}
term client(left, right, acq, rel) ::= {
(emp) -> [left] -> (key) -> [acq] -> (unlocked)
-> [rel] -> (key) -> [right] -> (emp);
token (emp);
}
term once(t) ::= {
(p) -> [t];
token (p);
}

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Full grammar

gram gamma ::= {
start Sys();

sys: Sys() ->
Arc(left, right, send, recv)
|| client(right, left, send, recv);

rec: Arc(left, right, send, recv) ->
Arc(left, mid, send!acq, recv!rel)
|| client(mid, right, acq, rel);

ini: Arc(left, right, send, recv) ->
lock(send!acq, recvl!rel)
|| client(left, right, acq, rel);

Neven Villani Counting Abstraction, Network Grammars

2024-10-11

Full grammar

with gamma do {
do {
safety EF (client. (key) > 1);
safety EF (client. (unlocked) + lock.(locked) > 1);

}
do {
choose client*i;
safety EF (client*i. (unlocked) > 0 /\ lock.(locked) > 0);
}
do {
choose client*j;
choose client*k;
safety EF (client*j.(key) > 0 /\ client*k.(key) > 0);
}

Neven Villani Counting Abstraction, Network Grammars 2024-10-11

Case studies

Filename Architecture Property Result |Count| Depth Runtime (ms) Runtime (ms)
(.gram) excl. oracle | incl. oracle
philos Ring Mutual exclusion | Negative | 2 4 98 4+ 8 105 4+ 10

philos-asym Ring Mutual exclusion | Negative | 4 4 1324+ 7 176 4+ 15
ring Ring Global uniqueness| Negative | 2,8 | 3,4 62 + 1 119 4+ 17
leader-election Ring Mutual exclusion | Negative | 2 2 46 4 2 11945

server-loop |Ring of stars| Mutual exclusion | Negative | 40 7 903 £ 74 | 1533 478
star Star Global uniqueness| Negative | 2 2 54 4+ 6 78 + 16

star-ring Linked star |Global uniqueness| Negative | 2 2 54 + 3 89 + 23

tree-dfs Binary tree Global uniqueness| Mixed 5 5 7548 129 4 40

tree-down Binary tree |Global uniqueness| Negative | 3 5 47 + 2 63 + 16

tree-halves | Binary tree | Mutual exclusion | Negative | 4 4 93 + 13 362 4 46
tree-nav Linked tree |Global uniqueness| Negative | 2,12 | 4,5 130 £ 8 201 £ 33
coverapprox Ring Unreachability Mixed 2 2 81 + 26 254 + 51
propagation Ring Unreachability Mixed 2 3 136 + 52 1041 4+ 156
lock Star Mutual exclusion | Mixed 2 2 524+ 3 75 4 27
open Double ring | Unreachability |Unknown| 2 3 954+ 11 911 4127

Neven Villani

Counting Abstraction, Network Grammars

2024-10-11

	The setting
	Goals
	Contribution
	Token ring with resource
	Some undesirable configurations
	Parameterization
	Requirements

	Implementation
	Lock
	Lock
	Client

	Interactions
	Interactions through disjoint composition

	Architecture
	Structure: inductive step
	Structure represented by a grammar
	Representable architectures

	Safety specification
	Safety properties
	Expressible properties

	Verification
	Using an abstraction
	Using an abstraction
	Counting abstraction (folding)
	Implementing α
	What does client# look like ?
	Practical computation of client#
	Initial marking
	Initial marking
	Initial marking
	Soundness
	Automation loop
	Implementation

	Refinement
	A false positive
	Contracts
	Composing contracts
	Conclusion

	Appendix
	Full grammar
	Full grammar
	Full grammar
	Case studies

