Counting Abstraction for the Verification of Structured Parameterized Networks

Neven Villani

Marius Bozga, Radu Iosif, Arnaud Sangnier

2024-10-11

Goals

Prove correctness of distributed protocols (e.g. mutex, leader election)

- encoded as a network of communicating processes
- system of arbitrary size
- **fully automated** analysis

Difficulty:

- general problem is undecidable
- techniques to handle finitely many processes with infinite behaviors do not immediately translate to infinitely many processes

Contribution

1. The setting

Reduction technique

- from
 - infinite system
 - finite behaviors (1-safe Petri nets)
 - reachability problem
- to
 - finite systems
 - infinite behaviors (Petri nets)
 - coverability problem

with support for complex topologies, fully automated, fully implemented.

Some undesirable configurations

1. The setting

Safety: only one process at a time claims to own the unique resources

Parameterization

1. The setting

 $\forall n \geq 2$

Requirements

- an encoding of the **implementation** of processes
- a description of the **interactions** and **architectures** of arbitrary size
- a **specification language** for safety properties
- **approximation techniques** that work on infinite families
- a **decidable** problem to reduce to

Lock

Lock

Client

4. Architecture

Neven Villani

Structure represented by a grammar

4. Architecture

$$\begin{split} X & \longrightarrow \mathsf{compose} \big(\\ & \mathsf{rename}_{\mathsf{left} \mapsto \mathsf{mid}} \big(\mathsf{copy}_{\mathsf{send} \rightsquigarrow \mathsf{acq}, \mathsf{recv} \rightsquigarrow \mathsf{rel}}(X) \big), \\ & \mathsf{rename}_{\mathsf{right} \mapsto \mathsf{mid}} \big(\mathsf{proc} \big) \end{split}$$

Structure represented by a grammar

$$\begin{split} & \operatorname{Sys} \longrightarrow \operatorname{compose}(X, \operatorname{rename}_{\operatorname{left} \mapsto \operatorname{right}, \operatorname{right} \mapsto \operatorname{left}}(\operatorname{proc}') \\ & X \longrightarrow \operatorname{compose}(\\ & \operatorname{rename}_{\operatorname{left} \mapsto \operatorname{mid}}(\operatorname{copy}_{\operatorname{send} \rightsquigarrow \operatorname{acq}, \operatorname{recv} \rightsquigarrow \operatorname{rel}}(X)), \\ & \operatorname{rename}_{\operatorname{right} \mapsto \operatorname{mid}}(\operatorname{proc}) \\ &) \\ & X \longrightarrow \operatorname{compose}(\operatorname{copy}_{\operatorname{send} \rightsquigarrow \operatorname{acq}, \operatorname{recv} \rightsquigarrow \operatorname{rel}}(\operatorname{lock}), \operatorname{proc}) \end{split}$$

Representable architectures

4. Architecture

These manipulations are encoded in a form similar to CFG for graphs.

- language of a grammar is an (infinite) set of Petri nets
- many families of networks of bounded tree-width are representable
- missing: grids, cliques

5. Safety specification

Safety properties

5. Safety specification

 $\#(\mathcal{P})$: number of tokens on \mathcal{P}

 \sim number of clients who claim to own the key

If any size of the system has a reachable configuration with $\#(\mathcal{P}) + \#(\mathcal{P}) > 1$, there is a bug in the specification.

Proving safety \approx solving a reachability problem in an infinite family of Petri nets

Other undesirable configurations: $\#(\frac{1}{2}) + \#(\frac{1}{2}) > 1$

Expressible properties

5. Safety specification

mutual exclusion

"at most k processes can enter a critical section simultaneously"

• uniqueness

"the entire system contains at most k instances of a resource"

unreachability

"no process can reach a bad state"

Examples: leader election, locks and semaphores, dining philosophers, ...

Missing: liveness, deadlock freedom

Using an abstraction

6. Verification

 $\begin{pmatrix} \text{Implementation} \\ \text{Petri nets} \end{pmatrix} + \begin{pmatrix} \text{Architecture} \\ \text{Grammar } \Gamma \end{pmatrix} + \begin{pmatrix} \text{Specification} \\ \text{Formula } \varphi \end{pmatrix}$ ~> Do all systems generated by Γ avoid bad configurations φ ? (written $\Gamma \nvDash \varphi$)

Undecidable !

Using an abstraction

6. Verification

 $\begin{pmatrix} \text{Implementation} \\ \text{Petri nets} \end{pmatrix} + \begin{pmatrix} \text{Abstract architecture} \\ \text{Grammar } \alpha(\Gamma) \end{pmatrix} + \begin{pmatrix} \text{Specification} \\ \text{Formula } \varphi \end{pmatrix}$ $\rightsquigarrow \text{ Do all systems generated by } \alpha(\Gamma) \text{ avoid bad configurations } \varphi?$ $(\text{written } \alpha(\Gamma) \nvDash \varphi)$

- $\alpha(\Gamma)$ finite \rightarrow coverability solvable on $\alpha(\Gamma)$
- α should preserve violations of safety properties

6. Verification

lpha

Implementing α

Implementing α

Implementing α

6. Verification

lpha

What does client[#] look like ?

What does client[#] look like ?

Practical computation of client[#]

6. Verification

Find a least fixed point of the equation

In practice: bottoms-up application of the rules of the grammar (finite domain).

Initial marking

6. Verification

Sys \longrightarrow compose(X, rename_{left \mapsto right, right \mapsto left(proc'))} $X \longrightarrow \text{compose}($ $\operatorname{rename}_{\operatorname{left}\mapsto\operatorname{mid}}(\operatorname{copy}_{\operatorname{send}\rightsquigarrow\operatorname{acq},\operatorname{recv}\rightsquigarrow\operatorname{rel}}(X)),$ $\mathsf{rename}_{\mathsf{right}\mapsto\mathsf{mid}}(\mathsf{proc})$ $X \longrightarrow \mathsf{compose}(\mathsf{copy}_{\mathsf{send} \rightsquigarrow \mathsf{acq}, \mathsf{recv} \rightsquigarrow \mathsf{rel}}(\mathsf{lock}), \mathsf{proc})$

Initial marking

6. Verification

 $Sys \longrightarrow compose(X, rename_{left \mapsto right, right \mapsto left}(proc'))$ $X \longrightarrow \text{compose}($ $\mathsf{rename}_{\mathsf{left}\mapsto\mathsf{mid}}(\mathsf{copy}_{\mathsf{send}\!\to\!\mathsf{acq},\mathsf{recv}\!\to\!\mathsf{rel}}(X)),$ $\mathsf{rename}_{\mathsf{right}\mapsto\mathsf{mid}}(\mathsf{proc})$ $X \rightarrow \operatorname{compose}(\operatorname{copy}_{\operatorname{send} \rightsquigarrow \operatorname{acq}, \operatorname{recv} \rightsquigarrow \operatorname{rel}}(\operatorname{lock}), \operatorname{proc})$

Initial marking

6. Verification

From the grammar

Sys
$$\longrightarrow X$$
, proc'
 $X \longrightarrow X$, proc
 $X \longrightarrow \text{lock}$, proc

From the initial states

$$proc' \longrightarrow \mathcal{P}$$
$$proc \longrightarrow \emptyset$$
$$lock \longrightarrow \mathbf{\hat{p}}$$

Soundness

6. Verification

Counting abstraction is sound:

- if Γ contains undesirable behaviors then $\alpha(\Gamma)$ too
- contrapositive:

if $\alpha(\Gamma) \nvDash \varphi$ (abstract system is safe) then $\Gamma \nvDash \varphi$ (concrete system is safe).

Reciprocal implication does not hold

- undecidability
- false positives

Automation loop

Implementation

6. Verification

Input: text file describing the grammar and the safety properties

- computes the abstraction
- offloads the coverability problem to a specialized solver
- ~ 7500 lines of OCaml

This example:

- specification in 40 lines
- 4 safety properties in 200ms

Other case studies:

• 15 examples, 7 architectures, 27 safety properties

7. Refinement

A false positive

7. Refinement

$b \ge 1$ is **not** reachable

 $b \ge 1$ is reachable

Contracts

7. Refinement

- formula that restricts firing sequences
- boolean contract: $\neg t$ means "no admissible firing sequence fires t"
- problem becomes reachability through only firing sequences that satisfy the contract

Composing contracts

- Finite domain (boolean formulas, bounded number of variables)
- If C_1, C_2 are contracts for N_1, N_2 , then $C_1 \wedge C_2$ is a contract for $\mathsf{compose}(N_1, N_2)$.
- Fixed point is computable.

The construction is lossy, but can be more accurate than folding without contracts.

7. Refinement

Conclusion

7. Refinement

- technique to reduce infinite systems to finite instances
- in part architecture-agnostic
- observed efficient in practice

Future work

- explore completeness
- improve refinements
- encode more complex systems (infinite behaviors, reconfigurations)

8. Appendix

Full grammar


```
term lock(send, recv) ::= {
    (emp) -> [recv] -> (locked) -> [send] -> (emp);
    token (locked);
}
```

```
term client(left, right, acq, rel) ::= {
    (emp) -> [left] -> (key) -> [acq] -> (unlocked)
        -> [rel] -> (key) -> [right] -> (emp);
    token (emp);
}
```

```
term once(t) ::= {
    (p) -> [t];
    token (p);
}
```

Full grammar


```
gram gamma ::= {
    start Sys();
```

```
sys: Sys() ->
    Arc(left, right, send, recv)
    || client(right, left, send, recv);
```

```
rec: Arc(left, right, send, recv) ->
    Arc(left, mid, send!acq, recv!rel)
    || client(mid, right, acq, rel);
```

```
ini: Arc(left, right, send, recv) ->
    lock(send!acq, recv!rel)
    || client(left, right, acq, rel);
```

}

Full grammar


```
with gamma do {
    do {
        safety EF (client.(key) > 1);
        safety EF (client.(unlocked) + lock.(locked) > 1);
    }
    do {
        choose client*i;
        safety EF (client*i.(unlocked) > 0 /\ lock.(locked) > 0);
    }
    do {
        choose client*j;
        choose client*k;
        safety EF (client*j.(key) > 0 /  client*k.(key) > 0);
    }
```

}

Case studies

8. Appendix

Filename	Architecture	Property	Result	Count	Depth	Runtime (ms)	Runtime (ms)
(.gram)						excl. oracle	incl. oracle
philos	Ring	Mutual exclusion	Negative	2	4	98 ± 8	105 ± 10
philos-asym	Ring	Mutual exclusion	Negative	4	4	132 ± 7	176 ± 15
ring	Ring	Global uniqueness	Negative	2, 8	3, 4	62 ± 1	119 ± 17
leader-election	Ring	Mutual exclusion	Negative	2	2	46 ± 2	119 ± 5
server-loop	Ring of stars	Mutual exclusion	Negative	40	7	903 ± 74	1533 ± 478
star	Star	Global uniqueness	Negative	2	2	54 ± 6	78 ± 16
star-ring	Linked star	Global uniqueness	Negative	2	2	54 ± 3	89 ± 23
tree-dfs	Binary tree	Global uniqueness	Mixed	5	5	75 ± 8	129 ± 40
tree-down	Binary tree	Global uniqueness	Negative	3	5	47 ± 2	63 ± 16
tree-halves	Binary tree	Mutual exclusion	Negative	4	4	93 ± 13	362 ± 46
tree-nav	Linked tree	Global uniqueness	Negative	2, 12	4, 5	130 ± 8	201 ± 33
coverapprox	Ring	Unreachability	Mixed	2	2	81 ± 26	254 ± 51
propagation	Ring	Unreachability	Mixed	2	3	136 ± 52	1041 ± 156
lock	Star	Mutual exclusion	Mixed	2	2	52 ± 3	75 ± 27
open	Double ring	Unreachability	Unknown	2	3	95 ± 11	911 ± 127