
Counting Abstraction for
the Verification of

Structured Parameterized Networks
Neven Villani

Marius Bozga, Radu Iosif, Arnaud Sangnier

2024-10-11

1. The setting

Goals 1. The setting

Prove correctness of distributed protocols (e.g. mutex, leader election)
• encoded as a network of communicating processes
• system of arbitrary size
• fully automated analysis

Difficulty:
• general problem is undecidable
• techniques to handle finitely many processes with infinite behaviors

do not immediately translate to infinitely many processes

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 1

Contribution 1. The setting

Reduction technique
• from

‣ infinite system
‣ finite behaviors (1-safe Petri nets)
‣ reachability problem

• to
‣ finite systems
‣ infinite behaviors (Petri nets)
‣ coverability problem

with support for complex topologies,
fully automated, fully implemented.

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 2

Token ring with resource 1. The setting

client

client
client

client

client
client

client

lock

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Token ring with resource 1. The setting

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Token ring with resource 1. The setting

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Token ring with resource 1. The setting

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Token ring with resource 1. The setting

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Token ring with resource 1. The setting

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Token ring with resource 1. The setting

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Token ring with resource 1. The setting

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 3

Some undesirable configurations 1. The setting

Safety: only one process at a time claims to own the unique resources

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 4

Parameterization 1. The setting

∀𝑛 ≥ 2
Neven Villani Counting Abstraction, Network Grammars 2024-10-11 5

Requirements 1. The setting

• an encoding of the implementation of processes
• a description of the interactions and architectures of arbitrary size
• a specification language for safety properties
• approximation techniques that work on infinite families
• a decidable problem to reduce to

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 6

2. Implementation

Lock 2. Implementation

lock

∅

recvsend

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 7

Lock 2. Implementation

lock

∅

recvsend

≈

⟶
emit “send“

⟵
emit “recv“

lock

∅

recvsend

≈

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 8

Client 2. Implementation

client

∅

left right

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 9

3. Interactions

Interactions through disjoint composition 3. Interactions

client

∅

left right

acq rel client

∅

left right

client

∅

left right

lock
∅

recvsend

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 10

Interactions through disjoint composition 3. Interactions

client

∅

x y

acq rel client

∅

y right

client

∅

left x

lock
∅

relacq

⊎ ⊎

⊎

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 10

Interactions through disjoint composition 3. Interactions

client

∅

left

client

∅

right

lock
∅

client

∅

x y

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 10

Interactions through disjoint composition 3. Interactions

client

∅

left

client

∅

right

lock
∅

client

∅

x y

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 10

Interactions through disjoint composition 3. Interactions

client

∅

left

client

∅

right

lock
∅

client

∅

x y

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 10

Interactions through disjoint composition 3. Interactions

client

∅

left

client

∅

right

lock
∅

client

∅

x y

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 10

Interactions through disjoint composition 3. Interactions

client

∅

left

client

∅

right

lock
∅

client

∅

x y

acq rel

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 10

4. Architecture

Structure: inductive step 4. Architecture

send
recv

left

right

∅

∅

∅

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 11

Structure: inductive step 4. Architecture

send
recv

left

right

right

left

acq

rel
∅

∅

∅

∅

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 11

Structure: inductive step 4. Architecture

send
recv

acq

rel

mid

right

mid

left

acq

rel

𝖼𝗈𝗉𝗒

𝗋𝖾𝗇𝖺𝗆𝖾

∅

∅

∅

∅

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 11

Structure: inductive step 4. Architecture

send
recv

right

left

𝖼𝗈𝗆𝗉𝗈𝗌𝖾

∅

∅

∅

∅

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 11

Structure represented by a grammar 4. Architecture

𝑋 ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(

𝗋𝖾𝗇𝖺𝗆𝖾left↦mid(𝖼𝗈𝗉𝗒send⇝acq,recv⇝rel(𝑋)),

𝗋𝖾𝗇𝖺𝗆𝖾right↦mid(proc)

)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 12

Structure represented by a grammar 4. Architecture

Sys ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝑋, 𝗋𝖾𝗇𝖺𝗆𝖾left↦right, right↦left(proc′))

𝑋 ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(

𝗋𝖾𝗇𝖺𝗆𝖾left↦mid(𝖼𝗈𝗉𝗒send⇝acq,recv⇝rel(𝑋)),

𝗋𝖾𝗇𝖺𝗆𝖾right↦mid(proc)

)

𝑋 ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝖼𝗈𝗉𝗒send⇝acq,recv⇝rel(lock), proc)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 12

Representable architectures 4. Architecture

These manipulations are encoded in a form similar to CFG for graphs.
• language of a grammar is an (infinite) set of Petri nets
• many families of networks of bounded tree-width are representable
• missing: grids, cliques

1 3 2 1 3 4 2

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 13

5. Safety specification

Safety properties 5. Safety specification

#(): number of tokens on
∼ number of clients who claim to own the key

If any size of the system has a reachable configuration with
#() + #() > 1, there is a bug in the specification.

Proving safety ≈ solving a reachability problem in an infinite family of
Petri nets

Other undesirable configurations: #() + #() > 1

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 14

Expressible properties 5. Safety specification

• mutual exclusion
“at most 𝑘 processes can enter a critical section simultaneously”

• uniqueness
“the entire system contains at most 𝑘 instances of a resource”

• unreachability
“no process can reach a bad state”

Examples: leader election, locks and semaphores, dining philosophers, …

Missing: liveness, deadlock freedom

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 15

6. Verification

Using an abstraction 6. Verification

(Implementation
Petri nets

) + (Architecture
Grammar Γ

) + (Specification
Formula 𝜑

)

⇝ Do all systems generated by Γ avoid bad configurations 𝜑?
(written Γ ⊭ 𝜑)

Undecidable !

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 16

Using an abstraction 6. Verification

(Implementation
Petri nets

) + (Abstract architecture
Grammar 𝛼(Γ)

) + (Specification
Formula 𝜑

)

⇝ Do all systems generated by 𝛼(Γ) avoid bad configurations 𝜑?
(written 𝛼(Γ) ⊭ 𝜑)

• 𝛼(Γ) finite → coverability solvable on 𝛼(Γ)
• 𝛼 should preserve violations of safety properties

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 17

Counting abstraction (folding) 6. Verification

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 18

Counting abstraction (folding) 6. Verification

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 18

Counting abstraction (folding) 6. Verification

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 18

Counting abstraction (folding) 6. Verification

⟶
𝛼

client

client

client

client# lock

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 18

Implementing 𝛼 6. Verification

𝑎 𝑎

𝑏

𝑐 𝑐

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 19

Implementing 𝛼 6. Verification

𝑎 𝑎

𝑏

𝑐 𝑐

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 19

Implementing 𝛼 6. Verification

𝑎 𝑎

𝑏

𝑐 𝑐

⟶
𝛼

𝑎

𝑏

𝑐

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 19

What does client# look like ? 6. Verification

client

∅

left

acq rel

client

∅

acq rel

client

∅

right

acq rel

…

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 20

What does client# look like ? 6. Verification

client

∅

left right

acq rel

𝑛

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 20

Practical computation of client# 6. Verification

Find a least fixed point of the equation

client

?left right

acq rel

= 𝖿𝗈𝗅𝖽

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

client

?left

acq rel

client

∅

right

acq rel ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

In practice: bottoms-up application of the rules of the grammar
(finite domain).

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 21

Initial marking 6. Verification

Sys ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝑋, 𝗋𝖾𝗇𝖺𝗆𝖾left↦right, right↦left(proc′))

𝑋 ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(

𝗋𝖾𝗇𝖺𝗆𝖾left↦mid(𝖼𝗈𝗉𝗒send⇝acq,recv⇝rel(𝑋)),

𝗋𝖾𝗇𝖺𝗆𝖾right↦mid(proc)

)

𝑋 ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝖼𝗈𝗉𝗒send⇝acq,recv⇝rel(lock), proc)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 22

Initial marking 6. Verification

Sys ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝑋, 𝗋𝖾𝗇𝖺𝗆𝖾left↦right, right↦left(proc′))

𝑋 ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(

𝗋𝖾𝗇𝖺𝗆𝖾left↦mid(𝖼𝗈𝗉𝗒send⇝acq,recv⇝rel(𝑋)),

𝗋𝖾𝗇𝖺𝗆𝖾right↦mid(proc)

)

𝑋 ⟶ 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝖼𝗈𝗉𝗒send⇝acq,recv⇝rel(lock), proc)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 23

Initial marking 6. Verification

From the grammar

Sys ⟶ 𝑋, proc'
𝑋 ⟶ 𝑋, proc
𝑋 ⟶ lock, proc

From the initial states

proc' ⟶
proc ⟶ ∅
lock ⟶

Sys

𝑋proc'

proclock

∅
Neven Villani Counting Abstraction, Network Grammars 2024-10-11 24

Soundness 6. Verification

Counting abstraction is sound:
• if Γ contains undesirable behaviors then 𝛼(Γ) too
• contrapositive:

if 𝛼(Γ) ⊭ 𝜑 (abstract system is safe)
then Γ ⊭ 𝜑 (concrete system is safe).

Reciprocal implication does not hold
• undecidability
• false positives

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 25

Automation loop 6. Verification

Start

Γ, 𝜑

𝛼(Γ), 𝜑

𝛼(Γ) ⊨? 𝜑Γ ⊭ 𝜑

input

abstraction

coverability
no

(soundness)
yes
→ refinement

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 26

Implementation 6. Verification

Input: text file describing the grammar and the safety properties
• computes the abstraction
• offloads the coverability problem to a specialized solver
• ∼ 7500 lines of OCaml

This example:
• specification in 40 lines
• 4 safety properties in 200ms

Other case studies:
• 15 examples, 7 architectures, 27 safety properties

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 27

7. Refinement

A false positive 7. Refinement

𝑎 𝑎

𝑏

𝑏 ≥ 1 is not reachable

⟶
𝖿𝗈𝗅𝖽

𝑎

𝑏

𝑏 ≥ 1 is reachable

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 28

Contracts 7. Refinement

• formula that restricts firing sequences
• boolean contract: ¬𝑡 means “no admissible firing sequence fires 𝑡”
• problem becomes reachability through only firing sequences that

satisfy the contract

client

∅

left right

acq rel

Contract:

(acq ∨ right ⇒ left) ∧ (rel ⇒ acq)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 29

Composing contracts 7. Refinement

• Finite domain (boolean formulas, bounded number of variables)
• If 𝐶1,𝐶2 are contracts for 𝑁1,𝑁2,

then 𝐶1 ∧ 𝐶2 is a contract for 𝖼𝗈𝗆𝗉𝗈𝗌𝖾(𝑁1, 𝑁2).
• Fixed point is computable.

The construction is lossy, but can be more accurate than folding without
contracts.

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 30

Conclusion 7. Refinement

• technique to reduce infinite systems to finite instances
• in part architecture-agnostic
• observed efficient in practice

Future work
• explore completeness
• improve refinements
• encode more complex systems (infinite behaviors, reconfigurations)

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 31

8. Appendix

Full grammar 8. Appendix

term lock(send, recv) ::= {
 (emp) -> [recv] -> (locked) -> [send] -> (emp);
 token (locked);
}

term client(left, right, acq, rel) ::= {
 (emp) -> [left] -> (key) -> [acq] -> (unlocked)
 -> [rel] -> (key) -> [right] -> (emp);
 token (emp);
}

term once(t) ::= {
 (p) -> [t];
 token (p);
}

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 32

Full grammar 8. Appendix

gram gamma ::= {
 start Sys();

 sys: Sys() ->
 Arc(left, right, send, recv)
 || client(right, left, send, recv);

 rec: Arc(left, right, send, recv) ->
 Arc(left, mid, send!acq, recv!rel)
 || client(mid, right, acq, rel);

 ini: Arc(left, right, send, recv) ->
 lock(send!acq, recv!rel)
 || client(left, right, acq, rel);
}

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 33

Full grammar 8. Appendix

with gamma do {
 do {
 safety EF (client.(key) > 1);
 safety EF (client.(unlocked) + lock.(locked) > 1);
 }
 do {
 choose client*i;
 safety EF (client*i.(unlocked) > 0 /\ lock.(locked) > 0);
 }
 do {
 choose client*j;
 choose client*k;
 safety EF (client*j.(key) > 0 /\ client*k.(key) > 0);
 }
}

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 34

Case studies 8. Appendix

Filename
(.gram)

Architecture Property Result Count Depth Runtime (ms)
excl. oracle

Runtime (ms)
incl. oracle

philos Ring Mutual exclusion Negative 2 4 98 ± 8 105 ± 10
philos-asym Ring Mutual exclusion Negative 4 4 132 ± 7 176 ± 15

ring Ring Global uniqueness Negative 2, 8 3, 4 62 ± 1 119 ± 17
leader-election Ring Mutual exclusion Negative 2 2 46 ± 2 119 ± 5
server-loop Ring of stars Mutual exclusion Negative 40 7 903 ± 74 1533 ± 478

star Star Global uniqueness Negative 2 2 54 ± 6 78 ± 16
star-ring Linked star Global uniqueness Negative 2 2 54 ± 3 89 ± 23
tree-dfs Binary tree Global uniqueness Mixed 5 5 75 ± 8 129 ± 40
tree-down Binary tree Global uniqueness Negative 3 5 47 ± 2 63 ± 16

tree-halves Binary tree Mutual exclusion Negative 4 4 93 ± 13 362 ± 46
tree-nav Linked tree Global uniqueness Negative 2, 12 4, 5 130 ± 8 201 ± 33

coverapprox Ring Unreachability Mixed 2 2 81 ± 26 254 ± 51
propagation Ring Unreachability Mixed 2 3 136 ± 52 1041 ± 156

lock Star Mutual exclusion Mixed 2 2 52 ± 3 75 ± 27
open Double ring Unreachability Unknown 2 3 95 ± 11 911 ± 127

Neven Villani Counting Abstraction, Network Grammars 2024-10-11 35

	The setting
	Goals
	Contribution
	Token ring with resource
	Some undesirable configurations
	Parameterization
	Requirements

	Implementation
	Lock
	Lock
	Client

	Interactions
	Interactions through disjoint composition

	Architecture
	Structure: inductive step
	Structure represented by a grammar
	Representable architectures

	Safety specification
	Safety properties
	Expressible properties

	Verification
	Using an abstraction
	Using an abstraction
	Counting abstraction (folding)
	Implementing α
	What does client# look like ?
	Practical computation of client#
	Initial marking
	Initial marking
	Initial marking
	Soundness
	Automation loop
	Implementation

	Refinement
	A false positive
	Contracts
	Composing contracts
	Conclusion

	Appendix
	Full grammar
	Full grammar
	Full grammar
	Case studies

