Towards Efficient Verification of Parallel

Applications with Mc SimGrid

Joint work with Martin Quinson (Magellan) and
Thierry Jéron (Devine)

Mathieu Laurent

October 14, 2024

MAGELLAN de‘ﬁ,ieo

Introduction
e0

Distributed computing

o HPC applications are
distributed and concurent

@ Data shared via messages (e.g.
MPI) or synchronizations
(e.g. thread)

@ Causes non-deterministic bugs

@ Software model checking covers
all cases

Introduction
o]]

Content of this talk

@ Introduction

© Dynamic software model checking
@ Principle
@ Partial order reduction
@ Best First (O)DPOR

e Explainability

@ Conclusion

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example v

P1/P> Ps
Send(P3) Recv()
Recv()

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps) Recv() !
Recv() B

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps) Recv() !
Recv() B

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps) Recv() !
Recv() B

Ps3*.

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps) Recv() !
Recv() B

Ps3

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps) Recv() !
Recv() B

Ps3

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps) Recv() !
Recv() B

Ps3

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps) Recv() !
Recv() B

Ps3

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(P3) Recv()
Recv()

Ps3

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(P3) Recv()
Recv()

Ps3

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(P3) Recv()
Recv()

Dynamic software model checking
[le]

Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps3) Recv()
Recv()

Stateful exploration P3
15 states for 2 behaviors.

Dynamic software model checking
Stateless model checking

I .'\. Q.\. Q/.. Q/.\. Q/.\. I
LI

Stateless exploration
35 states for the same 2 behaviors.

Dynamic software model checking
[le]e}

Transition dependency

Two actions ajg, ap are
independent if:

Example of two adjacent
independent actions

Mazurkiewicz's traces [Maz'77]

Equivalence class of executions with adjacent independent actions
swapped

Dynamic software model checking
(o] le}

DPOR approach [Fla'05]

T

b
/'\/\f\ /'\/\/\ /\/\/'\\f\)

Classical depth first search algorithm

Dynamic software model checking
(o] le}

DPOR approach [Fla'05]

Start with an arbitrary execution

Dynamic software model checking
(o] le}

DPOR approach [Fla'05]

Pl(Send(PA)) AR

[™

Py(Send(Pa))

Discover dependencies

Dynamic software model checking
(o] le}

DPOR approach [Fla'05]

Send (Pc))

\ (Send(Pc¢))
o o

Recursive DFS exploration of what has been added

Dynamic software model checking
[efe]]

ODPOR approach [Abd'14]

Pl(Send(PA)) AR
® ~
Py(Send(Pa)) \
o

Insert sequences instead of a single step

Dynamic software model checking
[efe]]

ODPOR approach [Abd'14]

™

4
N

What if the only bug is far from the first guess?

Dynamic software model checking
000

Best First (O)DPOR

<{\
)
t 7
% \\\
Backtrack - N
‘/ >

Partially
Explored
Subtree

Multiple opened states)

Corresponding to partially
explored executions:

Notion of responsability
between subtrees

)

Dynamic software model checking
(o] o]

What for?

@ Alleviates the impact of .\
early choices

@ Allows the use of heuristic

Counterexample in the other half

While (True){ .
While (1CAS(x, 0, 1))4 @ Works around practical
y = 2; problems (as busy waiting)
} @ Encodes classical model
¥ checking behavior (like
fairness)

Example of a busy waiting

Dynamic software model checking
ooe

Experimental results

MPI example slightly modified

Py P, P3
Send(Ps) Send(Ps3) MPI Barrier()
MPI Barrier() MPI Barrier() Recv()

Recv()

10000

e e T T [[0

4 5 6 7 8 s 10
Number of MPI_Barrier

Number of visited States

L 1
(L

w

Exploration strategy DFs - Uniform-DFS £ Ui Branch Ui Step

Exopolainability
Why?

% DEADLOCK DETECTED *
1 actor is still active, awaiting something. Here is its status:
- pid 3 (2enode-10.simgrid.org) simcall CommWait(comm_id:2@ src:-1 dst:3 mbox:SMPI-3(id:3))
Counter-example execution trace:
Actor 2 in :@: simcall: iSend(mbox=3)
Actor simcall: iSend(mbox=3)
Actor :0: simcall: iRecv(mbox=4)
Actor simcall: iRecv(mbox=4)
Actor 2 in :@: simcall: isend(mbox=4)
Actor simcall: WaitComm(from mbox=4, no timeout)
Actor :e: simcall: iRecv(mbox=5)
Actor simcall: iSend(mbox=4)
Actor :0: simcall: WaitComm(from mbox=4, no timeout)
Actor simcall: iSend(mbox=5)
Actor 1 in :@: simcall: isend(mbox=3)
Actor simcall: iRecv(mbox=4)
Actor :e: simcall: iRecv(mbox=4)
Actor simcall: WaitComm(from mbox=5, no timeout)
Actor :0: simcall: iSend(mbox=4)
Actor simcall: WaitComm(from mbox=4, no timeout)
Actor 2 i simcall: iRecv(mbox=5)
Actor simcall: iRecv(mbox=3)
Actor simcall: WaitComm(from . mbox=3, no timeout)
Actor simcall: iSend(mbox=4)
Actor simcall: WaitComm(from mbox=4, no timeout)
Actor simcall: iSend(mbox=5)
Actor 1 i simcall: isend(mbox=3)
Actor simcall: WaitComm(from mbox=5, no timeout)
Actor simcall: iRecv(mbox=3)
Actor simcall: WaitComm(from mbox=3, no timeout)
Actor simcall: iRecv(mbox=3)
Actor :0: simcall: WaitComm(from mbox=3, no timeout)
simcall: iRecv(mbox=3)

Mc SimGrid output on a simple example with only two
MPI Barrier().

Explainability
[1)

The critical transition

.\‘

Critical transition

Let E be an incorrect execution,

Q—0@ - " N"\Q@—
A

Explainability
[1)

The critical transition

o
|
O
é ,
|
O

Critical transition

Let E be an incorrect execution,
the critical transition is the unique
€ E s.t.

Explainability
[1)

The critical transition

Critical transition

Let E be an incorrect execution,
) the critical transition is the unique
€ E s.t.

@ every execution from s’ is incorrect

e

. REVAVAVA\Z
A

=

Explainability
[1)

The critical transition

Critical transition

Let E be an incorrect execution,
) the critical transition is the unique
€ E s.t.

@ every execution from s’ is incorrect

N
e

@ there exists a correct execution from s)

:<>Q<—\/vvv‘

Explainability
ooe

Critical transition: how?

@ si.1 violates the property / !
s1
@ c; is the root of a correct subtree) bz
2
@ Hence, the critical transition is in
{b17 ey bk+1}
Sk
@ Use reduction and take a decision for bt
the non-explored transitions (mﬁ

N

Conclusion
[]

Conclusion

What we have done
@ New reduction algorithms allowing arbitrary search
@ Defining and computing critical transition

@ Implementing our reasearch in McSimGrid

Parallelize the implementation by BeFS ODPOR

Develop a good benchmark to explore heuristics

Simplify counter examples using critical section

	Introduction
	Dynamic software model checking
	Principle
	Partial order reduction
	Best First (O)DPOR

	Explainability
	Conclusion

