
1/15

Introduction Dynamic software model checking Explainability Conclusion

Towards Efficient Verification of Parallel
Applications with Mc SimGrid

Joint work with Martin Quinson (Magellan) and
Thierry Jéron (Devine)

Mathieu Laurent

October 14, 2024



2/15

Introduction Dynamic software model checking Explainability Conclusion

Distributed computing

HPC applications are
distributed and concurent

Data shared via messages (e.g.
MPI) or synchronizations
(e.g. thread)

Causes non-deterministic bugs

Software model checking covers
all cases



3/15

Introduction Dynamic software model checking Explainability Conclusion

Content of this talk

1 Introduction

2 Dynamic software model checking
Principle
Partial order reduction
Best First (O)DPOR

3 Explainability

4 Conclusion



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

P1 P3
P2

P2 P3 P1 P3
P1 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



4/15

Introduction Dynamic software model checking Explainability Conclusion

Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

Stateful exploration

15 states for 2 behaviors.

P1 P3
P2

P2 P3 P1 P3
P2 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3



5/15

Introduction Dynamic software model checking Explainability Conclusion

Stateless model checking

Stateless exploration

35 states for the same 2 behaviors.



6/15

Introduction Dynamic software model checking Explainability Conclusion

Transition dependency

Two actions a1, a2 are
independent if:

S Wa1

a2 a2

S

Wa1

a2 V

S’

a1

a2
Example of two adjacent
independent actions

Mazurkiewicz’s traces [Maz’77]

Equivalence class of executions with adjacent independent actions
swapped



7/15

Introduction Dynamic software model checking Explainability Conclusion

DPOR approach [Fla’05]

Classical depth first search algorithm



7/15

Introduction Dynamic software model checking Explainability Conclusion

DPOR approach [Fla’05]

Start with an arbitrary execution



7/15

Introduction Dynamic software model checking Explainability Conclusion

DPOR approach [Fla’05]

P1(Send(PA))

P3(Send(PB))

P2(Send(PA))

P4(Send(PB))

Discover dependencies



7/15

Introduction Dynamic software model checking Explainability Conclusion

DPOR approach [Fla’05]

P5(Send(PC ))

P6(Send(PC ))

Recursive DFS exploration of what has been added



8/15

Introduction Dynamic software model checking Explainability Conclusion

ODPOR approach [Abd’14]

P1(Send(PA))

P3(Send(PB))

P2(Send(PA))

P4(Send(PB))

Insert sequences instead of a single step



8/15

Introduction Dynamic software model checking Explainability Conclusion

ODPOR approach [Abd’14]

What if the only bug is far from the first guess?



9/15

Introduction Dynamic software model checking Explainability Conclusion

Best First (O)DPOR

t’

E

t
Backtrack

Backtrack

Partially 
Explored 
Subtree

● Multiple opened states

● Corresponding to partially 
explored executions:

● Notion of responsability 
between subtrees



10/15

Introduction Dynamic software model checking Explainability Conclusion

What for?

Alleviates the impact of
early choices

Allows the use of heuristic

Counterexample in the other half

While(True){

While (!CAS(x, 0, 1)){

y = 2;

}

}

Example of a busy waiting

Works around practical
problems (as busy waiting)

Encodes classical model
checking behavior (like
fairness)



11/15

Introduction Dynamic software model checking Explainability Conclusion

Experimental results

MPI example slightly modified

P1 P2 P3

Send(P3) Send(P3) MPI Barrier()
MPI Barrier() MPI Barrier() Recv()

Recv()

100

1000

10000

3 4 5 6 7 8 9 10
Number of MPI_Barrier

N
um

be
r 

of
 v

is
ite

d 
S

ta
te

s

Exploration strategy DFS Uniform−DFS Uniform−BeFS Branch Uniform−BeFS Step



12/15

Introduction Dynamic software model checking Explainability Conclusion

Why?

Mc SimGrid output on a simple example with only two
MPI Barrier().



13/15

Introduction Dynamic software model checking Explainability Conclusion

The critical transition

Critical transition

Critical transition

Let E be an incorrect execution,
the critical transition is the unique
t = (s, a, s ′) ∈ E s.t.

every execution from s ′ is incorrect

there exists a correct execution from s



13/15

Introduction Dynamic software model checking Explainability Conclusion

The critical transition

Critical transition

Critical transition

Let E be an incorrect execution,
the critical transition is the unique
t = (s, a, s ′) ∈ E s.t.

every execution from s ′ is incorrect

there exists a correct execution from s



13/15

Introduction Dynamic software model checking Explainability Conclusion

The critical transition

Critical transition

Critical transition

Let E be an incorrect execution,
the critical transition is the unique
t = (s, a, s ′) ∈ E s.t.

every execution from s ′ is incorrect

there exists a correct execution from s



13/15

Introduction Dynamic software model checking Explainability Conclusion

The critical transition

Critical transition

Critical transition

Let E be an incorrect execution,
the critical transition is the unique
t = (s, a, s ′) ∈ E s.t.

every execution from s ′ is incorrect

there exists a correct execution from s



14/15

Introduction Dynamic software model checking Explainability Conclusion

Critical transition: how?

sk+1 violates the property

c1 is the root of a correct subtree

Hence, the critical transition is in
{b1, . . . , bk+1}

Use reduction and take a decision for
the non-explored transitions

s0

s1

s2

sk

sk+1

E

b1

b2

bk+1

c1

a

?



15/15

Introduction Dynamic software model checking Explainability Conclusion

Conclusion

What we have done

New reduction algorithms allowing arbitrary search

Defining and computing critical transition

Implementing our reasearch in McSimGrid

Future work

Parallelize the implementation by BeFS ODPOR

Develop a good benchmark to explore heuristics

Simplify counter examples using critical section


	Introduction
	Dynamic software model checking
	Principle
	Partial order reduction
	Best First (O)DPOR

	Explainability
	Conclusion

