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Distributed computing

HPC applications are
distributed and concurent

Data shared via messages (e.g.
MPI) or synchronizations
(e.g. thread)

Causes non-deterministic bugs

Software model checking covers
all cases
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Exploring the transition systems

A small MPI example
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Exploring the transition systems

A small MPI example

P1/P2 P3

Send(P3) Recv()
Recv()

Stateful exploration

15 states for 2 behaviors.

P1 P3
P2

P2 P3 P1 P3
P2 P3 P1

P3 P2 P3 P1 P2 P3 P1 P3

P3 P2 P1 P3
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Stateless model checking

Stateless exploration

35 states for the same 2 behaviors.
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Transition dependency

Two actions a1, a2 are
independent if:

S Wa1

a2 a2

S

Wa1

a2 V

S’

a1

a2
Example of two adjacent
independent actions

Mazurkiewicz’s traces [Maz’77]

Equivalence class of executions with adjacent independent actions
swapped
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DPOR approach [Fla’05]

Classical depth first search algorithm
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DPOR approach [Fla’05]

Start with an arbitrary execution
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DPOR approach [Fla’05]

P1(Send(PA))

P3(Send(PB))

P2(Send(PA))

P4(Send(PB))

Discover dependencies
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DPOR approach [Fla’05]

P5(Send(PC ))

P6(Send(PC ))

Recursive DFS exploration of what has been added
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ODPOR approach [Abd’14]

P1(Send(PA))

P3(Send(PB))

P2(Send(PA))

P4(Send(PB))

Insert sequences instead of a single step
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ODPOR approach [Abd’14]

What if the only bug is far from the first guess?
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Best First (O)DPOR

t’

E

t
Backtrack

Backtrack

Partially 
Explored 
Subtree

● Multiple opened states

● Corresponding to partially 
explored executions:

● Notion of responsability 
between subtrees



10/15

Introduction Dynamic software model checking Explainability Conclusion

What for?

Alleviates the impact of
early choices

Allows the use of heuristic

Counterexample in the other half

While(True){

While (!CAS(x, 0, 1)){

y = 2;

}

}

Example of a busy waiting

Works around practical
problems (as busy waiting)

Encodes classical model
checking behavior (like
fairness)
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Experimental results

MPI example slightly modified

P1 P2 P3

Send(P3) Send(P3) MPI Barrier()
MPI Barrier() MPI Barrier() Recv()

Recv()
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Why?

Mc SimGrid output on a simple example with only two
MPI Barrier().
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The critical transition

Critical transition

Critical transition

Let E be an incorrect execution,
the critical transition is the unique
t = (s, a, s ′) ∈ E s.t.

every execution from s ′ is incorrect

there exists a correct execution from s
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Critical transition: how?

sk+1 violates the property

c1 is the root of a correct subtree

Hence, the critical transition is in
{b1, . . . , bk+1}

Use reduction and take a decision for
the non-explored transitions

s0

s1

s2

sk

sk+1

E

b1

b2

bk+1

c1

a

?
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Conclusion

What we have done

New reduction algorithms allowing arbitrary search

Defining and computing critical transition

Implementing our reasearch in McSimGrid

Future work

Parallelize the implementation by BeFS ODPOR

Develop a good benchmark to explore heuristics

Simplify counter examples using critical section
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