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Distributed computing

o HPC applications are
distributed and concurent

@ Data shared via messages (e.g.
MPI) or synchronizations
(e.g. thread)

@ Causes non-deterministic bugs

@ Software model checking covers
all cases
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Content of this talk

@ Introduction

© Dynamic software model checking
@ Principle
@ Partial order reduction
@ Best First (O)DPOR

e Explainability

@ Conclusion
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A small MPI example v

P1/P> Ps
Send(P3) Recv()
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Exploring the transition systems

A small MPI example

P1/P> Ps
Send(Ps3) Recv()
Recv()

Stateful exploration P3
15 states for 2 behaviors.
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Stateless model checking
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Stateless exploration
35 states for the same 2 behaviors.
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Transition dependency

Two actions ajg, ap are
independent if:

Example of two adjacent
independent actions

Mazurkiewicz's traces [Maz'77]

Equivalence class of executions with adjacent independent actions
swapped
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DPOR approach [Fla'05]
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Classical depth first search algorithm
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DPOR approach [Fla'05]

Start with an arbitrary execution
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DPOR approach [Fla'05]

Pl(Send(PA)) AR
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Py(Send(Pa))

Discover dependencies
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DPOR approach [Fla'05]

Send (Pc))

\ (Send(Pc¢))
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Recursive DFS exploration of what has been added
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ODPOR approach [Abd'14]

Pl(Send(PA)) AR
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Py(Send(Pa)) \
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Insert sequences instead of a single step
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ODPOR approach [Abd'14]
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What if the only bug is far from the first guess?
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Best First (O)DPOR
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Partially
Explored
Subtree

Multiple opened states )

Corresponding to partially
explored executions:

Notion of responsability
between subtrees

)
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What for?

@ Alleviates the impact of .\
early choices

@ Allows the use of heuristic

Counterexample in the other half

While (True){ .
While (1CAS(x, 0, 1))4 @ Works around practical
y = 2; problems (as busy waiting)
} @ Encodes classical model
¥ checking behavior (like
fairness)

Example of a busy waiting
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Experimental results

MPI example slightly modified

Py P, P3
Send(Ps) Send(Ps3) MPI Barrier()
MPI Barrier() MPI Barrier() Recv()

Recv()
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Exploration strategy DFs - Uniform-DFS £ Ui Branch Ui Step
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Why?

**% DEADLOCK DETECTED ***
1 actor is still active, awaiting something. Here is its status:
- pid 3 (2enode-10.simgrid.org) simcall CommWait(comm_id:2@ src:-1 dst:3 mbox:SMPI-3(id:3))
Counter-example execution trace:
Actor 2 in :@: simcall: iSend(mbox=3)
Actor simcall: iSend(mbox=3)
Actor :0: simcall: iRecv(mbox=4)
Actor simcall: iRecv(mbox=4)
Actor 2 in :@: simcall: isend(mbox=4)
Actor simcall: WaitComm(from mbox=4, no timeout)
Actor :e: simcall: iRecv(mbox=5)
Actor simcall: iSend(mbox=4)
Actor :0: simcall: WaitComm(from mbox=4, no timeout)
Actor simcall: iSend(mbox=5)
Actor 1 in :@: simcall: isend(mbox=3)
Actor simcall: iRecv(mbox=4)
Actor :e: simcall: iRecv(mbox=4)
Actor simcall: WaitComm(from mbox=5, no timeout)
Actor :0: simcall: iSend(mbox=4)
Actor simcall: WaitComm(from mbox=4, no timeout)
Actor 2 i simcall: iRecv(mbox=5)
Actor simcall: iRecv(mbox=3)
Actor simcall: WaitComm(from . mbox=3, no timeout)
Actor simcall: iSend(mbox=4)
Actor simcall: WaitComm(from mbox=4, no timeout)
Actor simcall: iSend(mbox=5)
Actor 1 i simcall: isend(mbox=3)
Actor simcall: WaitComm(from mbox=5, no timeout)
Actor simcall: iRecv(mbox=3)
Actor simcall: WaitComm(from mbox=3, no timeout)
Actor simcall: iRecv(mbox=3)
Actor :0: simcall: WaitComm(from mbox=3, no timeout)
simcall: iRecv(mbox=3)

Mc SimGrid output on a simple example with only two
MPI Barrier().
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The critical transition
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Critical transition

Let E be an incorrect execution,
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Critical transition

Let E be an incorrect execution,
the critical transition is the unique
€ E s.t.
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The critical transition

Critical transition

Let E be an incorrect execution,
) the critical transition is the unique
€ E s.t.

@ every execution from s’ is incorrect

N
e

@ there exists a correct execution from s )
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Critical transition: how?

@ si.1 violates the property / !
s1
@ c; is the root of a correct subtree ) bz
2
@ Hence, the critical transition is in
{b17 ey bk+1}
Sk
@ Use reduction and take a decision for bt
the non-explored transitions (mﬁ

N
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Conclusion

What we have done
@ New reduction algorithms allowing arbitrary search
@ Defining and computing critical transition

@ Implementing our reasearch in McSimGrid

Parallelize the implementation by BeFS ODPOR

Develop a good benchmark to explore heuristics

Simplify counter examples using critical section
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