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Restriction: Nested locking

All processes acquire and release locks in a stack-like order, i.e., a process can only release
the lock it acquired the latest.
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This restricts communication between processes.
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Dynamic LSS

▷ We want to allow an unbounded number of processes and locks.

▷ A process can spawn other processes

▷ A process takes parameters, represented by lock variables

Proc = {P(ℓ1, ℓ2),Q(ℓ1, ℓ2, ℓ3),R(), ...}
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Tree representation

P(ℓ1, ℓ2)
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spawn : P(new, ℓ1)

relℓ1 acqℓ2

Specifications are ω-regular tree languages.

“Every process is blocked after some point”

“Finitely many processes are spawned”

“Infinitely many processes reach an error state qerr”

Deadlocks
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Regular model-checking problem

Input: A DLSS D and a parity tree automaton A.
Output: Is there a run of D accepted by A?

Problem: characterise trees that represent actual executions.
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Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential
size.

For each node we guess a label of the form

▶ “ℓ1 is taken and will never be released”,
“ℓ2 will be acquired infinitely many
times”, ...

▶

The automaton checks that:

▶ the labels are consistent

▶ There exists a well-founded linear ordering
on locks in which all local orders embed.
(Technical part, also see related work
[Demri Quaas, Concur ’23])
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Theorem [M., Muscholl, Walukiewicz Concur 2023]

Regular model-checking of DLSS is EXPTIME-complete, and
PTIME for fixed number of locks per process and parity index.

What about pushdown processes?
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Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a right child.

Lemma

Emptiness is decidable in PTIME for right-resetting parity pushdown tree automata when the
parity index is fixed.

Theorem

Regular model-checking of nested pushdown DLSS is EXPTIME-complete,
and PTIME when the parity index and the number of locks per process are fixed.

What about shared variables?
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DLSS with variables
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ab

We add a register and operations wr and
rd writing and reading letters from a finite
alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS
with variables.
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Bounded writer reversals

Writer reversal = the process writing in the shared register changes.

Theorem

State reachability is decidable for DLSSV with bounded writer reversals.

It is undecidable when the processes are pushdown systems3.

3Atig, Bouajjani, Kumar, Saivasan FSTTCS 2014
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Proof sketch

Consider a run with one process writing and others reading.

Phase: run section where

▶ the writer is in the same state and has the same locks at the start and at the end,

▶ none of the locks used by the writers in the phase are held by another process at the start
or the end

Lemma

Every finite run with a single writer can be cut into 2O(|Q|) phases.
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Proof sketch

Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

▶ guesses a partition of the tree in K2O(|Q|)

phases, each with a single writer.

▶ checks lock conditions

▶ checks compatibility of each reader with
the writer
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What is left to do

Conjecture

Verification of DLSSV against ω-regular tree specifications is decidable.

▶ Controller synthesis: local strategies enforcing the specification

▶ Parameterised complexity w.r.t. the number of locks per process: everything is in XP, can
we do better?

Thanks!
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