
On the Send-synchronizability problem for
Mailbox Communication

Romain Delpy, Anca Muscholl, Grégoire Sutre

Univ. of Bordeaux, France

Réunion PaVeDyS, 2025, Paris

G R

V

xi

yi xi+

0 1 2
a

b
a

b

..
.

..
.

1 Introduction

2 Send-synchronizability

3 1-schedulability

4 Fully-matched & Good traces

5 1-sched & Bad traces

6 Conclusion

1 Introduction

2 Send-synchronizability

3 1-schedulability

4 Fully-matched & Good traces

5 1-sched & Bad traces

6 Conclusion

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)

send

receive

Mailbox:
p0

p1 q

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/17

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1 q

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/17

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1 q

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/17

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1 q
m1

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/17

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1 q
m1m0

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/17

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

p0:

p0!q(m0)

q:

q?p0(m0)

q?p1(m1)

p1:

p1!q(m1)
send

receive

Mailbox:
p0

p1 q
m1m0

One FIFO
channel per
process.

Mailbox executions
Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/17

Message Sequence Charts
Multiple executions with same effect on system.

p0:
p0!q(m0)

q:

q?p0(m0)

q?p1(m1)
p1:

p1!q(m1)

Message Sequence Charts (MSC)
Partial-order representation of behaviors of a CFM (order between
events on a same process, between paired send/receive & mailbox
order).
Two equivalent executions have the same MSC.

Mailbox order: two sends to the same process are ordered if the
first one is matched.

2/17

Message Sequence Charts
Multiple executions with same effect on system.

p0:
p0!q(m0)

q:

q?p0(m0)

q?p1(m1)
p1:

p1!q(m1)

exec 0: exec 1:

p0!q(m0) p0!q(m0)

q?p0(m0) p1!q(m1)

p1!q(m1) q?p0(m0)

Message Sequence Charts (MSC)
Partial-order representation of behaviors of a CFM (order between
events on a same process, between paired send/receive & mailbox
order).
Two equivalent executions have the same MSC.

Mailbox order: two sends to the same process are ordered if the
first one is matched.

2/17

Message Sequence Charts
Multiple executions with same effect on system.

p0:
p0!q(m0)

q:

q?p0(m0)

q?p1(m1)
p1:

p1!q(m1)

p0 q p1
m0

unmatched
send

m1

Message Sequence Charts (MSC)
Partial-order representation of behaviors of a CFM (order between
events on a same process, between paired send/receive & mailbox
order).
Two equivalent executions have the same MSC.

Mailbox order: two sends to the same process are ordered if the
first one is matched.

2/17

Message Sequence Charts
Multiple executions with same effect on system.

p0:
p0!q(m0)

q:

q?p0(m0)

q?p1(m1)
p1:

p1!q(m1)

p0 q p1
m0

unmatched
send

m1

Message Sequence Charts (MSC)
Partial-order representation of behaviors of a CFM (order between
events on a same process, between paired send/receive & mailbox
order).
Two equivalent executions have the same MSC.

Mailbox order: two sends to the same process are ordered if the
first one is matched.

2/17

1 Introduction

2 Send-synchronizability

3 1-schedulability

4 Fully-matched & Good traces

5 1-sched & Bad traces

6 Conclusion

Send-synchronizability
w =p0!q(m0) q?p0(m0) p1!q(m1)

projection on sends of w
w |S =p0!q(m0) q?p0(m0) p1!q(m1)

Executions
For a CFM A.

• Tr(A) set of all executions of A.
• Trrdv(A) set of all executions

where sends are directly followed
by their matching receive.

0 1 2
a

b
a

b

..
.

..
.

Trrdv(A)|S = (ab)∗(a + ε)
Tr(A)|S ∩ a∗b∗ = {anbn | n ≥ 0}, not regular.

Send-Synchronizability
A CFM A is called sendsend-synchronizable if
Tr(A)|S = Trrdv(A)|S .

3/17

Send-synchronizability
w =p0!q(m0) q?p0(m0) p1!q(m1)

projection on sends of w
w |S =p0!q(m0) q?p0(m0) p1!q(m1)

Executions
For a CFM A.

• Tr(A) set of all executions of A.
• Trrdv(A) set of all executions

where sends are directly followed
by their matching receive.

0 1 2
a

b
a

b

..
.

..
.

Trrdv(A)|S = (ab)∗(a + ε)
Tr(A)|S ∩ a∗b∗ = {anbn | n ≥ 0}, not regular.

Send-Synchronizability
A CFM A is called sendsend-synchronizable if
Tr(A)|S = Trrdv(A)|S .

3/17

Send-synchronizability
w =p0!q(m0) q?p0(m0) p1!q(m1)

projection on sends of w
w |S =p0!q(m0) q?p0(m0) p1!q(m1)

Executions
For a CFM A.

• Tr(A) set of all executions of A.
• Trrdv(A) set of all executions

where sends are directly followed
by their matching receive.

0 1 2
a

b
a

b

..
.

..
.

Trrdv(A)|S = (ab)∗(a + ε)
Tr(A)|S ∩ a∗b∗ = {anbn | n ≥ 0}, not regular.

Send-Synchronizability
A CFM A is called sendsend-synchronizable if
Tr(A)|S = Trrdv(A)|S .

3/17

Send-synchronizability
w =p0!q(m0) q?p0(m0) p1!q(m1)

projection on sends of w
w |S =p0!q(m0) q?p0(m0) p1!q(m1)

Executions
For a CFM A.

• Tr(A) set of all executions of A.
• Trrdv(A) set of all executions

where sends are directly followed
by their matching receive.

0 1 2
a

b
a

b

..
.

..
.

Trrdv(A)|S = (ab)∗(a + ε)

Tr(A)|S ∩ a∗b∗ = {anbn | n ≥ 0}, not regular.

Send-Synchronizability
A CFM A is called sendsend-synchronizable if
Tr(A)|S = Trrdv(A)|S .

3/17

Send-synchronizability
w =p0!q(m0) q?p0(m0) p1!q(m1)

projection on sends of w
w |S =p0!q(m0) q?p0(m0) p1!q(m1)

Executions
For a CFM A.

• Tr(A) set of all executions of A.
• Trrdv(A) set of all executions

where sends are directly followed
by their matching receive.

0 1 2
a

b
a

b

..
.

..
.

Trrdv(A)|S = (ab)∗(a + ε)
Tr(A)|S ∩ a∗b∗ = {anbn | n ≥ 0}, not regular.

Send-Synchronizability
A CFM A is called sendsend-synchronizable if
Tr(A)|S = Trrdv(A)|S .

3/17

Send-synchronizability
w =p0!q(m0) q?p0(m0) p1!q(m1)

projection on sends of w
w |S =p0!q(m0) q?p0(m0) p1!q(m1)

Executions
For a CFM A.

• Tr(A) set of all executions of A.
• Trrdv(A) set of all executions

where sends are directly followed
by their matching receive.

0 1 2
a

b
a

b

..
.

..
.

Trrdv(A)|S = (ab)∗(a + ε)
Tr(A)|S ∩ a∗b∗ = {anbn | n ≥ 0}, not regular.

Send-Synchronizability
A CFM A is called sendsend-synchronizable if
Tr(A)|S = Trrdv(A)|S . 3/17

History of Send-synchronizability

• [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

• [Finkel & Lozes, 2017] Showed that the proofs above were
flawed. Send-synchronizability is undecidable for peer-to-peer
CFMs. Decidable for ring topology.

• [Di Giusto, Laverza & Peters, 2024] Send-synchronizability is
undecidable for CFMs with final states.

Is Send-synchronizability decidable for mailbox CFMs?

If not, is there a subclass of CFMs such that
Send-synchronizability is decidable ?

4/17

History of Send-synchronizability

• [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

• [Finkel & Lozes, 2017] Showed that the proofs above were
flawed. Send-synchronizability is undecidable for peer-to-peer
CFMs. Decidable for ring topology.

• [Di Giusto, Laverza & Peters, 2024] Send-synchronizability is
undecidable for CFMs with final states.

Is Send-synchronizability decidable for mailbox CFMs?

If not, is there a subclass of CFMs such that
Send-synchronizability is decidable ?

4/17

History of Send-synchronizability

• [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

• [Finkel & Lozes, 2017] Showed that the proofs above were
flawed. Send-synchronizability is undecidable for peer-to-peer
CFMs. Decidable for ring topology.

• [Di Giusto, Laverza & Peters, 2024] Send-synchronizability is
undecidable for CFMs with final states.

Is Send-synchronizability decidable for mailbox CFMs?

If not, is there a subclass of CFMs such that
Send-synchronizability is decidable ?

4/17

History of Send-synchronizability

• [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

• [Finkel & Lozes, 2017] Showed that the proofs above were
flawed. Send-synchronizability is undecidable for peer-to-peer
CFMs. Decidable for ring topology.

• [Di Giusto, Laverza & Peters, 2024] Send-synchronizability is
undecidable for CFMs with final states.

Is Send-synchronizability decidable for mailbox CFMs?

If not, is there a subclass of CFMs such that
Send-synchronizability is decidable ?

4/17

Undecidability (short)
PCP (variant)
A set of pairs (x1, y1), . . . , (xK , yK) of words over an alphabet Σ.
Is there a sequence of indices i1, . . . , in ∈ {1, . . . , K} such that

• i1 = 1
• xi1 . . . xin = yi1 . . . yin
• |xi1 . . . xin | ≥ |yi1 . . . yin |

G R

V

xi

yi xi+

• Guess guesses the sequence of
indices, sends xi to Relay and yi to
Verif.

• Relay either delays letters of xi to
intertwine them with letters of yi
to Verif, or can receive and send
anything (dummy).

• Verif checks that the two words are
identical.

5/17

Undecidability (short)
PCP (variant)
A set of pairs (x1, y1), . . . , (xK , yK) of words over an alphabet Σ.
Is there a sequence of indices i1, . . . , in ∈ {1, . . . , K} such that

• i1 = 1
• xi1 . . . xin = yi1 . . . yin
• |xi1 . . . xin | ≥ |yi1 . . . yin |

G R

V

xi

yi xi+

• Guess guesses the sequence of
indices, sends xi to Relay and yi to
Verif.

• Relay either delays letters of xi to
intertwine them with letters of yi
to Verif, or can receive and send
anything (dummy).

• Verif checks that the two words are
identical. 5/17

1 Introduction

2 Send-synchronizability

3 1-schedulability

4 Fully-matched & Good traces

5 1-sched & Bad traces

6 Conclusion

Restriction: 1-Schedulable
1-schedulability
A trace is a 1-scheduling if every send is either followed by its
receive, or is unmatched.

A trace is 1-schedulable if it is equivalent to a 1-scheduling.
A CFM is 1-schedulable if all its traces are 1-schedulable.

w =p0!q(m0) q?p0(m0) p1!q(m1) is a 1-scheduling

w ′ =p0!q(m0) p1!q(m1) q?p0(m0) is 1-schedulable, as w ′ ≡ w

p0 q p1
m0

m1

Fully-matched 1-schedulings of a CFM = rendez-vous traces.

6/17

Restriction: 1-Schedulable
1-schedulability
A trace is a 1-scheduling if every send is either followed by its
receive, or is unmatched.
A trace is 1-schedulable if it is equivalent to a 1-scheduling.

A CFM is 1-schedulable if all its traces are 1-schedulable.

w =p0!q(m0) q?p0(m0) p1!q(m1) is a 1-scheduling
w ′ =p0!q(m0) p1!q(m1) q?p0(m0) is 1-schedulable, as w ′ ≡ w

p0 q p1
m0

m1

Fully-matched 1-schedulings of a CFM = rendez-vous traces.

6/17

Restriction: 1-Schedulable
1-schedulability
A trace is a 1-scheduling if every send is either followed by its
receive, or is unmatched.
A trace is 1-schedulable if it is equivalent to a 1-scheduling.
A CFM is 1-schedulable if all its traces are 1-schedulable.

w =p0!q(m0) q?p0(m0) p1!q(m1) is a 1-scheduling
w ′ =p0!q(m0) p1!q(m1) q?p0(m0) is 1-schedulable, as w ′ ≡ w

p0 q p1
m0

m1

Fully-matched 1-schedulings of a CFM = rendez-vous traces.

6/17

Restriction: 1-Schedulable
1-schedulability
A trace is a 1-scheduling if every send is either followed by its
receive, or is unmatched.
A trace is 1-schedulable if it is equivalent to a 1-scheduling.
A CFM is 1-schedulable if all its traces are 1-schedulable.

w =p0!q(m0) q?p0(m0) p1!q(m1) is a 1-scheduling
w ′ =p0!q(m0) p1!q(m1) q?p0(m0) is 1-schedulable, as w ′ ≡ w

p0 q p1
m0

m1

Fully-matched 1-schedulings of a CFM = rendez-vous traces.
6/17

Checking 1-schedulability
• <P order between event on same process.
• msg order between a send and its receive.
• <mb mailbox order.

0 1 2

0 1

Non 1-schedulable iff
there is a non-trivial (<P ∪ <mb ∪ msg ∪ msg−1)-cycle.

1-schedulability [Delpy, Muscholl & Sutre 2024]
The question whether a CFM is 1-schedulable is Pspace-complete.
The language of 1-scheduling of a CFM is regular.

7/17

Checking 1-schedulability
• <P order between event on same process.
• msg order between a send and its receive.
• <mb mailbox order.

0 1 2

0 1

Non 1-schedulable iff
there is a non-trivial (<P ∪ <mb ∪ msg ∪ msg−1)-cycle.

1-schedulability [Delpy, Muscholl & Sutre 2024]
The question whether a CFM is 1-schedulable is Pspace-complete.
The language of 1-scheduling of a CFM is regular.

7/17

Checking 1-schedulability
• <P order between event on same process.
• msg order between a send and its receive.
• <mb mailbox order.

0 1 2
0 1

Non 1-schedulable iff
there is a non-trivial (<P ∪ <mb ∪ msg ∪ msg−1)-cycle.

1-schedulability [Delpy, Muscholl & Sutre 2024]
The question whether a CFM is 1-schedulable is Pspace-complete.
The language of 1-scheduling of a CFM is regular.

7/17

Checking 1-schedulability
• <P order between event on same process.
• msg order between a send and its receive.
• <mb mailbox order.

0 1 2
0 1

Non 1-schedulable iff
there is a non-trivial (<P ∪ <mb ∪ msg ∪ msg−1)-cycle.

1-schedulability [Delpy, Muscholl & Sutre 2024]
The question whether a CFM is 1-schedulable is Pspace-complete.
The language of 1-scheduling of a CFM is regular.

7/17

Send-sync & 1-sched

Even for 1-schedulable CFMs, send-synchronizability is still hard:

0 1 2
a

b
a

b

..
.

..
.

1-schedulings of A regular but Tr(A)|S is not.

Need a way to describe Tr(A)|S from
1-schedulings!

Two cases:
• Restriction of Tr(A) to fully matched traces.
• Include not fully matched traces.

8/17

Send-sync & 1-sched

Even for 1-schedulable CFMs, send-synchronizability is still hard:

0 1 2
a

b
a

b

..
.

..
.

1-schedulings of A regular but Tr(A)|S is not.

Need a way to describe Tr(A)|S from
1-schedulings!

Two cases:
• Restriction of Tr(A) to fully matched traces.
• Include not fully matched traces.

8/17

Send-sync & 1-sched

Even for 1-schedulable CFMs, send-synchronizability is still hard:

0 1 2
a

b
a

b

..
.

..
.

1-schedulings of A regular but Tr(A)|S is not.

Need a way to describe Tr(A)|S from
1-schedulings!

Two cases:
• Restriction of Tr(A) to fully matched traces.
• Include not fully matched traces.

8/17

1 Introduction

2 Send-synchronizability

3 1-schedulability

4 Fully-matched & Good traces

5 1-sched & Bad traces

6 Conclusion

Fully-matched traces

a
b

w the 1-scheduling of this MSC has
w |S = a b, but exists w ′ ≡ w , with
w ′|S = b a.

Commutation: SI ⊆ S × S. Let a = p!q(m) and b = p′!q′(m′),
(a, b) ∈ SI if p ̸= p′, q ̸= q′ and q ̸= p′

If (a, b) ∈ SI, u, v ∈ S∗: uabv ⇒SI ubav .

ClSI(v) = {v ′ ∈ S∗ | v ∗⇒SI v ′}

If A 1-schedulable: Tr full-match(A)|S = ClSI(Trrdv(A)|S).

One can check if L ⊆ S∗ regular is closed under SI.

Send-sync for fully-matched 1-schedulable
The question whether a 1-schedulable CFM is send-synchronizable
over fully-matched traces is decidable.

9/17

Fully-matched traces

a
b

w the 1-scheduling of this MSC has
w |S = a b, but exists w ′ ≡ w , with
w ′|S = b a.

Commutation: SI ⊆ S × S. Let a = p!q(m) and b = p′!q′(m′),
(a, b) ∈ SI if p ̸= p′, q ̸= q′ and q ̸= p′

If (a, b) ∈ SI, u, v ∈ S∗: uabv ⇒SI ubav .

ClSI(v) = {v ′ ∈ S∗ | v ∗⇒SI v ′}

If A 1-schedulable: Tr full-match(A)|S = ClSI(Trrdv(A)|S).

One can check if L ⊆ S∗ regular is closed under SI.

Send-sync for fully-matched 1-schedulable
The question whether a 1-schedulable CFM is send-synchronizable
over fully-matched traces is decidable.

9/17

Fully-matched traces

a
b ab

Commutation: SI ⊆ S × S. Let a = p!q(m) and b = p′!q′(m′),
(a, b) ∈ SI if p ̸= p′, q ̸= q′ and q ̸= p′

If (a, b) ∈ SI, u, v ∈ S∗: uabv ⇒SI ubav .

ClSI(v) = {v ′ ∈ S∗ | v ∗⇒SI v ′}

If A 1-schedulable: Tr full-match(A)|S = ClSI(Trrdv(A)|S).

One can check if L ⊆ S∗ regular is closed under SI.

Send-sync for fully-matched 1-schedulable
The question whether a 1-schedulable CFM is send-synchronizable
over fully-matched traces is decidable.

9/17

Fully-matched traces

a
b ab

Commutation: SI ⊆ S × S. Let a = p!q(m) and b = p′!q′(m′),
(a, b) ∈ SI if p ̸= p′, q ̸= q′ and q ̸= p′

If (a, b) ∈ SI, u, v ∈ S∗: uabv ⇒SI ubav .

ClSI(v) = {v ′ ∈ S∗ | v ∗⇒SI v ′}

If A 1-schedulable: Tr full-match(A)|S = ClSI(Trrdv(A)|S).

One can check if L ⊆ S∗ regular is closed under SI.

Send-sync for fully-matched 1-schedulable
The question whether a 1-schedulable CFM is send-synchronizable
over fully-matched traces is decidable.

9/17

Fully-matched traces

a
b ab

Commutation: SI ⊆ S × S. Let a = p!q(m) and b = p′!q′(m′),
(a, b) ∈ SI if p ̸= p′, q ̸= q′ and q ̸= p′

If (a, b) ∈ SI, u, v ∈ S∗: uabv ⇒SI ubav .

ClSI(v) = {v ′ ∈ S∗ | v ∗⇒SI v ′}

If A 1-schedulable: Tr full-match(A)|S = ClSI(Trrdv(A)|S).

One can check if L ⊆ S∗ regular is closed under SI.

Send-sync for fully-matched 1-schedulable
The question whether a 1-schedulable CFM is send-synchronizable
over fully-matched traces is decidable.

9/17

Fully-matched traces

a
b ab

Commutation: SI ⊆ S × S. Let a = p!q(m) and b = p′!q′(m′),
(a, b) ∈ SI if p ̸= p′, q ̸= q′ and q ̸= p′

If (a, b) ∈ SI, u, v ∈ S∗: uabv ⇒SI ubav .

ClSI(v) = {v ′ ∈ S∗ | v ∗⇒SI v ′}

If A 1-schedulable: Tr full-match(A)|S = ClSI(Trrdv(A)|S).

One can check if L ⊆ S∗ regular is closed under SI.

Send-sync for fully-matched 1-schedulable
The question whether a 1-schedulable CFM is send-synchronizable
over fully-matched traces is decidable.

9/17

Unmatched sends makes it harder

0 1

..
.

a

a
b

b

0 1

..
.

a

a
b

b

(a, b) ̸∈ SI, but commutations are oblivious to matching of sends.

How to account for unmatched sends?

10/17

Unmatched sends makes it harder

0 1

..
.

a

a
b

b

0 1

..
.

a

a
b

b

(a, b) ̸∈ SI, but commutations are oblivious to matching of sends.

How to account for unmatched sends?

10/17

Unmatched sends makes it harder

0 1

..
.

a

a
b

b

0 1

..
.

a

a
b

b

(a, b) ̸∈ SI, but commutations are oblivious to matching of sends.

How to account for unmatched sends?

10/17

Extended order

Order caused by "possibility of receive":

a 99K b
• b not matched
• a ∥ b (not ordered)

0 1 2

a
b

Does not depend on the order of a and b in w .

This order is convenient with SI!
0 1 2

a
b

11/17

Extended order

Order caused by "possibility of receive":

a 99K b
• b not matched
• a ∥ b (not ordered)

0 1 2

a
b

Does not depend on the order of a and b in w .

This order is convenient with SI!
0 1 2

a
b

11/17

Extended order

Order caused by "possibility of receive":

a 99K b
• b not matched
• a ∥ b (not ordered)

0 1 2

a
b

Does not depend on the order of a and b in w .

This order is convenient with SI!
0 1 2

a
b

11/17

Good traces

We say that w ≡us w ′ if
• w ≡ w ′

• The order of unmatched
sends to each p is the same
in w and w ′

0 1 2

b
a

w = a b
w ′ = b a

Here w ≡ w ′ but w ̸≡us w ′!

A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs.

12/17

Good traces

We say that w ≡us w ′ if
• w ≡ w ′

• The order of unmatched
sends to each p is the same
in w and w ′

0 1 2

b
a

w = a b
w ′ = b a

Here w ≡ w ′ but w ̸≡us w ′!

A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs.

12/17

Good traces

We say that w ≡us w ′ if
• w ≡ w ′

• The order of unmatched
sends to each p is the same
in w and w ′

0 1 2

b
a

w = a b
w ′ = b a

Here w ≡ w ′ but w ̸≡us w ′!

A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs.

12/17

Good trace: example
A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs:

m0
m1

m2m3

m4
m5

m6

w ′ = s0 r0 s1 s3 r1 s2 r3 s4 s5 s6 r6

w ′ = s0 r0 s1 r1 s3 r3 s4 s5 s6 r6 s2

w ′ ≡us w .
w |S ∈ ClSI(w ′|S)

Good traces & Send-synchronizability
If all traces of a CFM A are good:
Tr(A)|S = ClSI({w | w is a 1-scheduling of A}|S).

13/17

Good trace: example
A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs:

m0
m1

m2m3

m4
m5

m6

w ′ = s0 r0 s1 s3 r1 s2 r3 s4 s5 s6 r6

w ′ = s0 r0 s1 r1 s3 r3 s4 s5 s6 r6 s2

w ′ ≡us w .
w |S ∈ ClSI(w ′|S)

Good traces & Send-synchronizability
If all traces of a CFM A are good:
Tr(A)|S = ClSI({w | w is a 1-scheduling of A}|S).

13/17

Good trace: example
A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs:

m0
m1

m2m3

m4
m5

m6

w ′ = s0 r0 s1 s3 r1 s2 r3 s4 s5 s6 r6

w ′ = s0 r0 s1 r1 s3 r3 s4 s5 s6 r6 s2

w ′ ≡us w .
w |S ∈ ClSI(w ′|S)

Good traces & Send-synchronizability
If all traces of a CFM A are good:
Tr(A)|S = ClSI({w | w is a 1-scheduling of A}|S).

13/17

Good trace: example
A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs:

m0
m1

m3

m4
m5

m6
m2

w ′ = s0 r0 s1 s3 r1 s2 r3 s4 s5 s6 r6
w ′ = s0 r0 s1 r1 s3 r3 s4 s5 s6 r6 s2

w ′ ≡us w .

w |S ∈ ClSI(w ′|S)

Good traces & Send-synchronizability
If all traces of a CFM A are good:
Tr(A)|S = ClSI({w | w is a 1-scheduling of A}|S).

13/17

Good trace: example
A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs:

m0
m1

m3

m4
m5

m6
m2

w ′ = s0 r0 s1 s3 r1 s2 r3 s4 s5 s6 r6
w ′ = s0 r0 s1 r1 s3 r3 s4 s5 s6 r6 s2

w ′ ≡us w .
w |S ∈ ClSI(w ′|S)

Good traces & Send-synchronizability
If all traces of a CFM A are good:
Tr(A)|S = ClSI({w | w is a 1-scheduling of A}|S).

13/17

Good trace: example
A trace w is good if there exists 1-scheduling w ′ ≡us w with no
99K-backward arcs:

m0
m1

m3

m4
m5

m6
m2

w ′ = s0 r0 s1 s3 r1 s2 r3 s4 s5 s6 r6
w ′ = s0 r0 s1 r1 s3 r3 s4 s5 s6 r6 s2

w ′ ≡us w .
w |S ∈ ClSI(w ′|S)

Good traces & Send-synchronizability
If all traces of a CFM A are good:
Tr(A)|S = ClSI({w | w is a 1-scheduling of A}|S).

13/17

1 Introduction

2 Send-synchronizability

3 1-schedulability

4 Fully-matched & Good traces

5 1-sched & Bad traces

6 Conclusion

Bad traces
Bad traces prevent send-synchronizability of 1-schedulable CFMs:

0 1

a
b b a ∈ Tr(A)|S .

But b and a not ordered, so a b ∈ Tr(A)|S .

If A is send-synchronizable, then Trrdv(A) contains

0 1

a
b

and

0 1
a

b

A will also have the following trace:

So A is not 1-schedulable!

0 1
a b

14/17

Bad traces
Bad traces prevent send-synchronizability of 1-schedulable CFMs:

0 1

a
b b a ∈ Tr(A)|S .

But b and a not ordered, so a b ∈ Tr(A)|S .

If A is send-synchronizable, then Trrdv(A) contains

0 1

a
b

and

0 1
a

b

A will also have the following trace:

So A is not 1-schedulable!

0 1
a b

14/17

Bad traces
Bad traces prevent send-synchronizability of 1-schedulable CFMs:

0 1

a
b b a ∈ Tr(A)|S .

But b and a not ordered, so a b ∈ Tr(A)|S .

If A is send-synchronizable, then Trrdv(A) contains

0 1

a
b

and

0 1
a

b

A will also have the following trace:

So A is not 1-schedulable!

0 1
a b

14/17

Bad traces
Bad traces prevent send-synchronizability of 1-schedulable CFMs:

0 1

a
b b a ∈ Tr(A)|S .

But b and a not ordered, so a b ∈ Tr(A)|S .

If A is send-synchronizable, then Trrdv(A) contains

0 1

a
b

and

0 1
a

b

A will also have the following trace:
So A is not 1-schedulable!

0 1
a b

14/17

Extended order: double unmatched

Recall:

a 99K b
• b unmatched
• a ∥ b (not ordered)

0 1 2

a
b

New order:
a ≪w

us b
• a, b unmatched
• a ∥ b
• a is before b in w

0 1 2

b
a

w = a b
Rem: u ≡us v iff ≪u

us=≪v
us.

15/17

Extended order: double unmatched

Recall:

a 99K b
• b unmatched
• a ∥ b (not ordered)

0 1 2

a
b

New order:
a ≪w

us b
• a, b unmatched
• a ∥ b
• a is before b in w

0 1 2

b
a

w = a b

Rem: u ≡us v iff ≪u
us=≪v

us.

15/17

Extended order: double unmatched

Recall:

a 99K b
• b unmatched
• a ∥ b (not ordered)

0 1 2

a
b

New order:
a ≪w

us b
• a, b unmatched
• a ∥ b
• a is before b in w

0 1 2

b
a

w = a b
Rem: u ≡us v iff ≪u

us=≪v
us.

15/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3m0
m1

m2
m3

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3m0
m1

m2
m3

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3m0
m1

m2
m3

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3m0
m1

m2
m3

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3m0
m1

m2
m3

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3m3

m0
m1

m2

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3
m1

m2
m3

m0

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Detecting bad traces
A trace w is good if some 1-scheduling w ≡us w ′ exists with no
99K-backward arcs

A trace w is bad iff it has a (<P ∪ <mb ∪ msg ∪ 99K ∪ ≪w
us)-cycle

0 1 2 3
m1

m2
m3

m0

w = s0 s1 r1 s2 s3

s0 <P s1 msg r1 <P s2 ≪w
us s3 99K s0

w ′ = s3 s0 s1 r1 s2.

Bad traces and send-synchronizability
If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.
Checking if a 1-schedulable CFM has some bad trace is
Pspace-complete.

16/17

Conclusion

• Send-synchronizability is undecidable for mailbox CFMs.

• Checking send-synchronizability is Pspace for the subclass of
1-schedulable CFMs (property that can be checked in
Pspace).

Technique used for the proof could be used for other problems
(realizability?).

1-schedulability is very restrictive :
Can we extend to k-schedulability ?

A 2-exchange.

THANK YOU

17/17

Conclusion

• Send-synchronizability is undecidable for mailbox CFMs.
• Checking send-synchronizability is Pspace for the subclass of

1-schedulable CFMs (property that can be checked in
Pspace).

Technique used for the proof could be used for other problems
(realizability?).

1-schedulability is very restrictive :
Can we extend to k-schedulability ?

A 2-exchange.

THANK YOU

17/17

Conclusion

• Send-synchronizability is undecidable for mailbox CFMs.
• Checking send-synchronizability is Pspace for the subclass of

1-schedulable CFMs (property that can be checked in
Pspace).

Technique used for the proof could be used for other problems
(realizability?).

1-schedulability is very restrictive :
Can we extend to k-schedulability ?

A 2-exchange.

THANK YOU

17/17

Conclusion

• Send-synchronizability is undecidable for mailbox CFMs.
• Checking send-synchronizability is Pspace for the subclass of

1-schedulable CFMs (property that can be checked in
Pspace).

Technique used for the proof could be used for other problems
(realizability?).

1-schedulability is very restrictive :
Can we extend to k-schedulability ?

A 2-exchange.

THANK YOU

17/17

Conclusion

• Send-synchronizability is undecidable for mailbox CFMs.
• Checking send-synchronizability is Pspace for the subclass of

1-schedulable CFMs (property that can be checked in
Pspace).

Technique used for the proof could be used for other problems
(realizability?).

1-schedulability is very restrictive :
Can we extend to k-schedulability ?

A 2-exchange.

THANK YOU
17/17

CFM for Pre-MPCP reduction
for i = 1, . . . , K

start N

G:

G!R(x1) G!V (y1) G!R($) G!V ($) G?V (#)

G!R(#)

G!R($)

G!R(xi) G!V (yi)

for m ∈ Σ

for m ∈ Σ ∪ {$, #}

start

N

D

V:

V ?R(m) V ?G(m)

V ?R($) V ?G($)

V !G(#)

V ?G(m)

for m ∈ Σ ∪ {$} V ?R(m)

for m ∈ Σ ∪ {$}

start

N

D

R:

R?G(m) R!V (m)

R!V ($)

R?G(m)

for m ∈ Σ ∪ {$, #}R?G(m)

for m ∈ Σ ∪ {$, #}

R!V (m)

for m ∈ Σ 1/1

	Introduction
	Send-synchronizability
	1-schedulability
	Fully-matched & Good traces
	1-sched & Bad traces
	Conclusion
	Appendix
	Appendix

