On the Send-synchronizability problem for

Mailbox Communication

Romain Delpy, Anca Muscholl, Grégoire Sutre
Univ. of Bordeaux, France

Réunion PaVeDyS, 2025, Paris

[uy

N

w

~

o

Introduction

Send-synchronizability

1-schedulability

Fully-matched & Good traces

1-sched & Bad traces

Conclusion

Introduction

Mailbox semantics

CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

Po: g P1:
:po!q(mo)o a7po(mo) :pllq(ml)o
a?p1(m1)

1/17

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

Po- q. P1:

send

po'a(mo) p1lq(mi)

®——0 a’po(mo) @——0
™

q?Pl(ml) receive

1/17

Mailbox semantics

CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

Po- q. P1:

send

po'a(mo) p1lq(mi)

®——0O a’po(mo) @ —=0
™

q?p1(m1) receive
One FIFO
. Po
Mailbox: >, . channel per
P1 g process.

1/17

Mailbox semantics

CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

Po- q. P1:

send

po'a(mo) p1lq(mi)

®——0O a’po(mo) O——=@
™

q?Pl(ml) receive
Po One FIFO
Mailbox: >, mi— channel per
P1 g process.

1/17

Mailbox semantics

CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

Po- q. P1:

send

po'a(mo) p1lq(mi)

O——® a’po(mo) O——=@
™

q?p1(m1) receive
Po One FIFO
Mailbox: >, Mo M1— channel per
pP1 q process.

1/17

Mailbox semantics
CFM: Communicating Finite-state Machines (set of processes
sending/receiving messages).

Po- q. P1:

send

po'a(mo) p1lq(mi)

O———® a’po(mo) O——@
\

q?p1(m1) receive
Po One FIFO
Mailbox: >, Mo M1— channel per
pP1 q process.

Mailbox executions

Executions that are possible for peer-to-peer communication may
not be possible for mailbox.

1/17

Message Sequence Charts

Multiple executions with same effect on system.

po'q(mo)
Po: @——0@ ®
q?po(mo)
©
p1lq(my) q?p1(my)
P1:@——© O

2/17

Message Sequence Charts

Multiple executions with same effect on system.

| a: | |
po'a(mo) exec 0: exec 1:
Po:O——® 47p0(mo) po'a(mo) po'q(mo)
a?po(mo) prla(my)
p1'q(mi) q?p1(m1) pi!q(m1) q?po(mo)
P1:O—@ O

2/17

Message Sequence Charts

Multiple executions with same effect on system.

po'q(mo) Po i A
Po: O——® mo
q?po(mo)
pl!q(ml) q?pl(ml) mlA\ unmatched

P1- O—’@ O send

Message Sequence Charts (MSC)
Partial-order representation of behaviors of a CFM (order between
events on a same process, between paired send/receive & mailbox

order).
Two equivalent executions have the same MSC.

2/17

Message Sequence Charts

Multiple executions with same effect on system.

po'q(mo) Po q P1
Po: O——®
q?po(mo)
p1'a(mi) q?p1(m1)

unmatched

P1- O—’@ O send

Message Sequence Charts (MSC)
Partial-order representation of behaviors of a CFM (order between
events on a same process, between paired send/receive & mailbox

order).
Two equivalent executions have the same MSC.

Mailbox order: two sends to the same process are ordered if the
first one is matched.

2/17

Introduction

Send-synchronizability

Send-synchronizability

w =po!q(mo) g?po(mo) p1'q(m1)
projection on sends of w

wls =po'q(mo) p1'q(m1)

3/17

Send-synchronizability

w =po!q(mo) g?po(mo) p1'q(m1)
projection on sends of w

wls =po'q(mo) p1'q(m1)

For a CFM A.
® Tr(.A) set of all executions of A.

® Trrav(A) set of all executions
where sends are directly followed
by their matching receive.

3/17

Send-synchronizability

w =po!q(mo) g?po(mo) p1!q(m)
projection on sends of w
wls =po'q(mo) pitq(mi)
e
For a CFM A. a
® Tr(.A) set of all executions of A.

® Trrav(A) set of all executions
where sends are directly followed
by their matching receive.

3/17

Send-synchronizability

w =polq(mo) q7po(mo) p1'q(m1)
projection on sends of w

w|s =po!q(mo) pilg(m)
Beations W 1 i
For a CFM A. a b
® Tr(.A) set of all executions of A. 3 ®
® Trrav(A) set of all executions b

where sends are directly followed
by their matching receive.

Trrdv(-A)|5 = (ab)*(a + E)

3/17

Send-synchronizability

w =polq(mo) q7po(mo) p1'q(m1)
projection on sends of w

w|s =po!q(mo) pilg(m)
Beations W 1 i
For a CFM A. a b
® Tr(.A) set of all executions of A. 3 ®
® Trrav(A) set of all executions b

where sends are directly followed
by their matching receive.

Trrdv(-A)|5 = (ab)*(a + E)
Tr(A)|s Nna*b* = {a"b" | n > 0}, not regular.

3/17

Send-synchronizability

w =polq(mo) q7po(mo) p1'q(m1)
projection on sends of w

wls =po!q(mo) p1'q(m1)

a

For a CFM A.
® Tr(.A) set of all executions of A.
® Trrav(A) set of all executions b
where sends are directly followed
by their matching receive.

Trrdv(-A)|5 = (ab)*(a + E)
Tr(A)|s Nna*b* = {a"b" | n > 0}, not regular.

Send-Synchronizability
A CFM A is called sendsend-synchronizable if
Tr(A)|s = Trrav(A)ls. 3/17

___History of Send-synchronizability __

¢ [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

4/17

___History of Send-synchronizability __

¢ [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

® [Finkel & Lozes, 2017] Showed that the proofs above were
flawed. Send-synchronizability is undecidable for peer-to-peer
CFMs. Decidable for ring topology.

4/17

___History of Send-synchronizability __

¢ [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

® [Finkel & Lozes, 2017] Showed that the proofs above were
flawed. Send-synchronizability is undecidable for peer-to-peer
CFMs. Decidable for ring topology.

¢ [Di Giusto, Laverza & Peters, 2024]| Send-synchronizability is
undecidable for CFMs with final states.

4/17

___History of Send-synchronizability __

¢ [Basu & Bultan, 2012/2016] Send-synchronizability is
decidable for mailbox and peer-to-peer CFMs.

® [Finkel & Lozes, 2017] Showed that the proofs above were
flawed. Send-synchronizability is undecidable for peer-to-peer
CFMs. Decidable for ring topology.

¢ [Di Giusto, Laverza & Peters, 2024]| Send-synchronizability is
undecidable for CFMs with final states.

Is Send-synchronizability decidable for mailbox CFMs?

If not, is there a subclass of CFMs such that
Send-synchronizability is decidable ?

4/17

__ Undecidability (short)

PCP (variant)

A set of pairs (x1,y1),- - ., (XK, yk) of words over an alphabet ¥.
Is there a sequence of indices i1, ..., i, € {1,..., K} such that
e 1 =1

® Xiy - Xip =VYi - Yin

® X ... Xi| > (Vi - il

5/17

__ Undecidability (short)

PCP (variant)

A set of pairs (x1,¥1), .., (xk,yk) of words over an alphabet ¥.
Is there a sequence of indices i, . .

e 1 =1
® Xiy - Xip =VYi - Yin

o |X,'1 ...X,'n| > |_y,'l ...y,'n|

. in €{1,..., K} such that

® Guess guesses the sequence of

indices, sends x; to Relay and y; to
Verif.

Relay either delays letters of x; to
intertwine them with letters of y;

to Verif, or can receive and send
anything (dummy).

Verif checks that the two words are
identical. 5/17

Introduction

Send-synchronizability

1-schedulability

___ Restriction: 1-Schedulable

1-schedulability

A trace is a 1-scheduling if every send is either followed by its
receive, or is unmatched.

w =po!q(mop) q?po(mp) p1'q(m1) is a 1-scheduling

Po
Mo

0

P1

6/17

___ Restriction: 1-Schedulable

1-schedulability
A trace is a 1-scheduling if every send is either followed by its

receive, or is unmatched.
A trace is 1-schedulable if it is equivalent to a 1-scheduling.

w =po!q(mop) q?po(mp) p1'q(m1) is a 1-scheduling
w’ =polq(mo) p1'q(m1) q?po(mp) is 1-schedulable, as w’ = w

Po q P1
Mo

mi

6/17

___ Restriction: 1-Schedulable

1-schedulability

A trace is a 1-scheduling if every send is either followed by its
receive, or is unmatched.

A trace is 1-schedulable if it is equivalent to a 1-scheduling.
A CFM is 1-schedulable if all its traces are 1-schedulable.

w =po!q(mo) q?po(mp) p1'q(m1) is a 1-scheduling
w’ =po!q(mo) p1'q(m1) q?po(mp) is 1-schedulable, as w’ = w

Po q P1
Mo

mi

6/17

Restriction: 1-Schedulable ______

1-schedulability

A trace is a 1-scheduling if every send is either followed by its
receive, or is unmatched.

A trace is 1-schedulable if it is equivalent to a 1-scheduling.
A CFM is 1-schedulable if all its traces are 1-schedulable.

w =po!q(mo) q?po(mp) p1'q(m1) is a 1-scheduling
w’ =po!q(mo) p1'q(m1) q?po(mp) is 1-schedulable, as w’ = w

Po q P1
Mo

mi

Fully-matched 1-schedulings of a CFM = rendez-vous traces.

6/17

_ Checking 1-schedulability

® <p order between event on same process.
® msg order between a send and its receive.

e <. mailbox order.
0 1 2

7/17

_ Checking 1-schedulability

® <p order between event on same process.
® msg order between a send and its receive.

e <. mailbox order.

7/17

_ Checking 1-schedulability

® <p order between event on same process.
® msg order between a send and its receive.

e <. mailbox order.

Non 1-schedulable iff
there is a non-trivial (<p U <g, Umsg Umsg~!)-cycle.

7/17

_ Checking 1-schedulability

® <p order between event on same process.
® msg order between a send and its receive.

e <. mailbox order.

Non 1-schedulable iff
there is a non-trivial (<p U <g, Umsg Umsg~!)-cycle.

1-schedulability [Delpy, Muscholl & Sutre 2024]

The question whether a CFM is 1-schedulable is PSPACE-complete.
The language of 1-scheduling of a CFM is regular.

7/17

Send-sync & 1-sched

Even for 1-schedulable CFMs, send-synchronizability is still hard:

0 1 2
a 1-schedulings of A regular but Tr(A)|s is not.

8/17

Send-sync & 1-sched

Even for 1-schedulable CFMs, send-synchronizability is still hard:

0

1

2

1-schedulings of A regular but Tr(A)|s is not.

Need a way to describe Tr(.A)|s from
1-schedulings!

8/17

Send-sync & 1-sched

Even for 1-schedulable CFMs, send-synchronizability is still hard:

0 1 2
a b 1-schedulings of A regular but Tr(A)|s is not.
a Need a way to describe Tr(.A)|s from
b .
_ 1-schedulings!
Two cases:

® Restriction of Tr(A) to fully matched traces.

® Include not fully matched traces.

8/17

Introduction

Send-synchronizability

1-schedulability

Fully-matched & Good traces

Fully-matched traces

w the 1-scheduling of this MSC has

a w|s = ab, but exists w’ = w, with
1 W/’_g =ba.

9/17

o

Fully-matched traces

=

w the 1-scheduling of this MSC has
w|s = ab, but exists w’ = w, with
W/|5 =ba.

Commutation: S/ C S x S. Let a= p!g(m) and b = p'l¢'(m’),
(a,b) e Slifp#p,q#q and g # p'
If (a,b) € SI, u,v € S*: uabv =g ubav.

9/17

Fully-matched traces

a
[b a
b P t—t
Commutation: S/ C S x S. Let a= p!g(m) and b = p'l¢'(m’),

(a,b) e Slifp#p', q#q and g # p/
If (a,b) € SI, u,v € S*: uabv =g ubav.

9/17

o

Fully-matched traces

Commutat

S SN e

ion: S/ C S xS. Let a= plg(m) and b = p'lq'(n’),

(a,b) e Slifp#p', q#q and g # p/
If (a,b) € SI, u,v € S*: uabv =g ubav.

Clgi(v) ={

VeS| vSg v}

9/17

Fully-matched traces

a
[b a
b P t—t
Commutation: S/ C S x S. Let a= p!g(m) and b = p'l¢'(m’),
(a,b) e Slifp#p', q#q and g # p/
If (a,b) € SI, u,v € S*: uabv =g ubav.
C/S/(V) = {V’ e s* ‘ v :*>5/ V’}

If A 1-schedulable: Treymatch(A)ls = Cls/(Trrav(A)ls).

9/17

Fully-matched traces

a
e ey
Commutation: S/ C S x S. Let a= p!g(m) and b = p'l¢'(m’),
(a,b) e Slifp#p', q#q and g # p/
If (a,b) € SI, u,v € S*: uabv =g ubav.
Cls(v)={v € §*|v>g v}
If A 1-schedulable: Treyimatch(A)|s = Clsi(Trrav(A)ls).

One can check if £ C S* regular is closed under SI.

Send-sync for fully-matched 1-schedulable

The question whether a 1-schedulable CFM is send-synchronizable
over fully-matched traces is decidable.

9/17

__Unmatched sends makes it harder _

10/17

__Unmatched sends makes it harder _

0 1 0 1
a]
: 5]
2 b
b --f—e

(a, b) € SI, but commutations are oblivious to matching of sends.

10/17

__Unmatched sends makes it harder _

0 1 0 1
a d
5 5]
2 b
b --le—e

(a, b) € SI, but commutations are oblivious to matching of sends.

How to account for unmatched sends?

10/17

Extended order

Order caused by "possibility of receive":

a--»b 0 1 2

® b not matched b ... N
® 2| b (not ordered)

11/17

Extended order

Order caused by "possibility of receive":

a--»b 0))
® b not matched b "l
® a | b (not ordered)

Does not depend on the order of a and b in w.

11/17

Extended order

Order caused by "possibility of receive":

a--»b 0))
® b not matched b "l
® a || b (not ordered)

Does not depend on the order of a and b in w.

This order is convenient with S/! b ‘H
4

11/17

Good traces

We say that w =, w' if

Cw=w 0 1 2
® The order of unmatched a_
sends to each p is the same b
in w and w’

12/17

Good traces

We say that w =, w' if

o w=w 0 1)
® The order of unmatched a_
sends to each p is the same b
in w and w’
w=ab
w =ba

— / /
Here w = w' but w # w'!

12/17

Good traces

We say that w =, w' if

o w=w 0 1)
® The order of unmatched a_
sends to each p is the same b
in w and w’
w=ab
w =ba

Here w = w/ but w #,s w'!
A trace w is good if there exists 1-scheduling w’ =5 w with no
--+-backward arcs.

12/17

Good trace: example

A trace w is good if there exists 1-scheduling w/ =,s w with no

--+»-backward arcs:

W = 509 1pS1531I1 52135455 S6 e

Mme

13/17

Good trace: example

A trace w is good if there exists 1-scheduling w/ =,s w with no
--»-backward arcs:

W = 59 IpS1530N 521354 S5

13/17

Good trace: example

A trace w is good if there exists 1-scheduling w/ =,s w with no

--+»-backward arcs:

W = S S153 6 S5 13545556 /6

Mg

13/17

Good trace: example

A trace w is good if there exists 1-scheduling w/ =,s w with no

--+»-backward arcs:

W = S S153 6 S5 13545556 /6 w =g w.
W/ = S0 lpS1 1 S3135455 56 ' 52

Mg

13/17

Good trace: example

A trace w is good if there exists 1-scheduling w/ =,s w with no
--»-backward arcs:

Mg

W =Sy /1 S153/1 S 548556 w =g w.
/
w =5y18115 S4S55 S wls € Clg(w'|s)

13/17

Good trace: example

A trace w is good if there exists 1-scheduling w/ =,s w with no
--»-backward arcs:

W =Sy /1 S153/1 S 548556 w =g w.
!
w = S0 /HS1/1S3 /5555 S» W|5 S C/S[(W |5)

Good traces & Send-synchronizability

If all traces of a CFM A are good:
Tr(A)|s = Cls)({w | w is a 1-scheduling of A}|s).

13/17

Introduction

Send-synchronizability

1-schedulability

Fully-matched & Good traces

1-sched & Bad traces

Bad traces

Bad traces prevent send-synchronizability of 1-schedulable CFMs:
0

1
b bae Tr(A)ls.
a1 But b and a not ordered, so ab € Tr(A)|s.

14/17

Bad traces

Bad traces prevent send-synchronizability of 1-schedulable CFMs:

0 1
] bae Tr(A)s.

a1 But b and a not ordered, so ab € Tr(A)|s.
3

If A is send-synchronizable, then Tryqy(A) contains

0 1 0 1

a and b

14/17

Bad traces

Bad traces prevent send-synchronizability of 1-schedulable CFMs:
0

1
] bae Tr(A)s.

a1 But b and a not ordered, so ab € Tr(A)|s.
3

If A is send-synchronizable, then Tryqy(A) contains

0 1 0 1

b/ \a
a_ | and | b
\ y
A will also have the following trace: a b

14/17

Bad traces

Bad traces prevent send-synchronizability of 1-schedulable CFMs:

0 1
] bae Tr(A)s.

a1 But b and a not ordered, so ab € Tr(A)|s.
3

If A is send-synchronizable, then Tryqy(A) contains

0 1 0 1

b/ \a
a | and] b
\ L
A will also have the following trace: a b
So A is not 1-schedulable!

14/17

_ Extended order: double unmatched _

Recall:

a--+b 0 1 2

® b unmatched b .. a
® a|| b (not ordered)

15/17

_ Extended order: double unmatched _

Recall:
a-—+b 0 1 2
® b unmatched *Jl__ﬂ__ a
® a|| b (not ordered) l——————*l
New order:
a<ib
® a b unmatched 0 1 5
® a|b a
® 3 is before b in w 'Hl,_bl

15/17

_ Extended order: double unmatched _

Recall:
a-—+b 0 1 2
® b unmatched *Jl__ﬂ__ a
® a|| b (not ordered) l——————*l
New order:
agy b
® a b unmatched 0 1 5
® a|b a
® 3 is before b in w 'Hl,_bl

Rem: u=, v iff <l =<..

15/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

16/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

A trace w is bad iff it has a (<pU <pp UmsgU --» U <Y,)-cycle

16/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

A trace w is bad iff it has a (<pU <mp UmsgU --» U <Y,)-cycle

0 1 2 3
Mo
m1 *—>--
mo ’
- ms

W = 50 5111 $2 S3

16/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

A trace w is bad iff it has a (<pU <mp UmsgU --» U <Y,)-cycle

0 1 2 3
Mo
m1 *—>--
mo ’
- ms

W = 50 5111 $2 S3

so <pS1msgr <pS Kl 53 --* S0

16/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

A trace w is bad iff it has a (<pU <mp UmsgU --» U <Y,)-cycle

0 1 2 3
Mo
m1 *—>--
mo ’
- ms

W = 50 5111 $2 S3
so <pS1msgr <pS Kl 53 --* S0

w! = 535051 11 So.

16/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

A trace w is bad iff it has a (<pU <mp UmsgU --» U <Y,)-cycle

W = 50 5111 $2 S3
so <pS1msgr <pS Kl 53 --* S0

w! = 535051 11 So.

16/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

A trace w is bad iff it has a (<pU <mp UmsgU --» U <Y,)-cycle

0 1 2 3

ms

W = 50 5111 $2 S3
so <pS1msgr <pS Kl 53 --* S0

w = 535051 11 So.

16/17

Detecting bad traces

A trace w is good if some 1-scheduling w =, w’ exists with no
--»-backward arcs

A trace w is bad iff it has a (<pU <mp UmsgU --» U <Y,)-cycle

Bad traces and send-synchronizability

If a 1-schedulable CFM has some bad trace, then it is not
send-synchronizable.

Checking if a 1-schedulable CFM has some bad trace is
PsSPACE-complete.

W = 53505111 5.

16/17

Conclusion

® Send-synchronizability is undecidable for mailbox CFMs.

17/17

Conclusion

® Send-synchronizability is undecidable for mailbox CFMs.

® Checking send-synchronizability is PSPACE for the subclass of
1-schedulable CFMs (property that can be checked in
PSPACE).

17/17

Conclusion

® Send-synchronizability is undecidable for mailbox CFMs.

® Checking send-synchronizability is PSPACE for the subclass of
1-schedulable CFMs (property that can be checked in
PSPACE).

Technique used for the proof could be used for other problems
(realizability?).

17/17

Conclusion

® Send-synchronizability is undecidable for mailbox CFMs.

® Checking send-synchronizability is PSPACE for the subclass of
1-schedulable CFMs (property that can be checked in
PSPACE).

Technique used for the proof could be used for other problems
(realizability?).

1-schedulability is very restrictive :
Can we extend to k-schedulability ?

A 2-exchange.

17/17

Conclusion

® Send-synchronizability is undecidable for mailbox CFMs.

® Checking send-synchronizability is PSPACE for the subclass of
1-schedulable CFMs (property that can be checked in
PSPACE).

Technique used for the proof could be used for other problems
(realizability?).

1-schedulability is very restrictive :
Can we extend to k-schedulability ?

A 2-exchange.

THANK YOU

17/17

___CFM for Pre-MPCP reduction__

fori=1,...,K
Q @)
G:
start —() O O
GIR(x1) GIV(F) —/ GIR() GIV(E) ~ GTV(#)
formeXx
V?R(m) (D\ V2G(m) VIGH#) R: for me T U{$, #}
O
V7R(S) v?6(3)
V:
R?G(m)

forme T U{$,#}

V2G(m)
for me X U{$} VIR(m) RIV(m)
for me XU {$} formeXx 1/1

	Introduction
	Send-synchronizability
	1-schedulability
	Fully-matched & Good traces
	1-sched & Bad traces
	Conclusion
	Appendix
	Appendix

