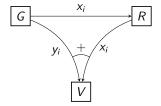
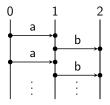
On the Send-synchronizability problem for Mailbox Communication

Romain Delpy, Anca Muscholl, Grégoire Sutre

Univ. of Bordeaux, France

Réunion PaVeDyS, 2025, Paris





1 Introduction

- 2 Send-synchronizability
- 3 1-schedulability
- 4 Fully-matched & Good traces
- 5 1-sched & Bad traces

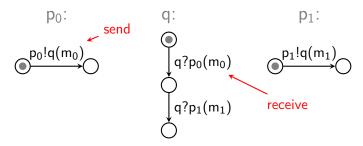
3 1-schedulability

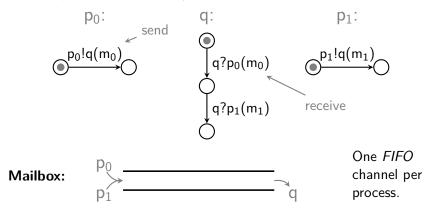
4 Fully-matched & Good traces

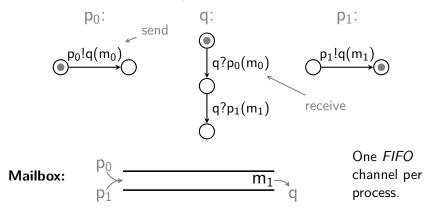
5 1-sched & Bad traces

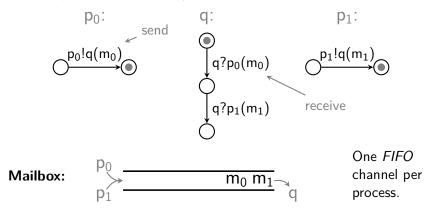
6 Conclusion

q: p₀: p₁: $p_1!q(m_1$ $p_0!q(m_0)$ $q?p_0(m_0) \\$ $q?p_1(m_1) \\$

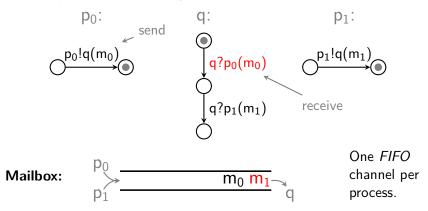








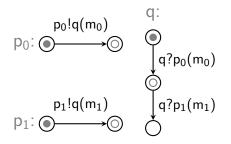
CFM: Communicating Finite-state Machines (set of processes sending/receiving messages).



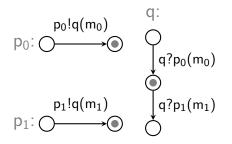
Mailbox executions

Executions that are possible for peer-to-peer communication may not be possible for mailbox.

Multiple executions with same effect on system.

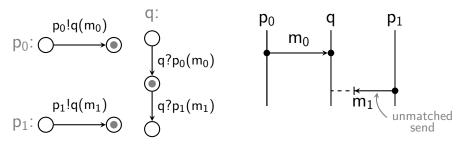


Multiple executions with same effect on system.



- exec 0: exec 1: $p_0!q(m_0) = p_0!q(m_0)$
- $q_{1}^{2}p_{0}(m_{0}) = p_{1}^{1}q(m_{1})$
- $q:p_0(m_0) = p_1:q(m_1)$
- $p_1!q(m_1) \quad q?p_0(m_0)$

Multiple executions with same effect on system.

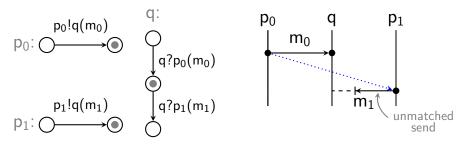


Message Sequence Charts (MSC)

Partial-order representation of behaviors of a CFM (order between events on a same process, between paired send/receive & *mailbox order*).

Two equivalent executions have the same MSC.

Multiple executions with same effect on system.



Message Sequence Charts (MSC)

Partial-order representation of behaviors of a CFM (order between events on a same process, between paired send/receive & *mailbox order*).

Two equivalent executions have the same MSC.

Mailbox order: two sends to the same process are ordered if the first one is matched.

3 1-schedulability

- 4 Fully-matched & Good traces
- 5 1-sched & Bad traces
- 6 Conclusion

 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ projection on sends of w $w|_S = p_0!q(m_0) \qquad p_1!q(m_1)$

 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ projection on sends of w $w|_S = p_0!q(m_0) \qquad p_1!q(m_1)$

Executions

For a CFM \mathcal{A} .

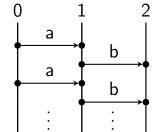
- $Tr(\mathcal{A})$ set of all executions of \mathcal{A} .
- *Tr*_{rdv}(*A*) set of all executions where sends are directly followed by their matching receive.

 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ projection on sends of w $w|_S = p_0!q(m_0) \qquad p_1!q(m_1)$

Executions

For a CFM \mathcal{A} .

- Tr(A) set of all executions of A.
- *Tr*_{rdv}(*A*) set of all executions where sends are directly followed by their matching receive.



 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ projection on sends of w $w|_S = p_0!q(m_0) \qquad p_1!q(m_1)$

Executions

For a CFM A.

- Tr(A) set of all executions of A.
- *Tr*_{rdv}(*A*) set of all executions where sends are directly followed by their matching receive.

$$\begin{array}{c} 0 & 1 & 2 \\ \hline a & b \\ \hline a & b \\ \hline \vdots & \vdots \\ \end{array}$$

2

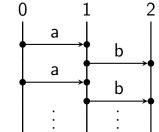
$$Tr_{rdv}(\mathcal{A})|_{\mathcal{S}} = (ab)^*(a + \varepsilon)$$

 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ projection on sends of w $w|_S = p_0!q(m_0) \qquad p_1!q(m_1)$

Executions

For a CFM \mathcal{A} .

- Tr(A) set of all executions of A.
- *Tr*_{rdv}(*A*) set of all executions where sends are directly followed by their matching receive.



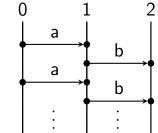
$$egin{array}{l} {Tr}_{{f rdv}}(\mathcal{A})ert_{S}=(ab)^{st}(a+arepsilon) \ {Tr}(\mathcal{A})ert_{S}\cap a^{st}b^{st}=\{a^{n}b^{n}\mid n\geq 0\}, ext{ not regular.} \end{array}$$

 $w = p_0! q(m_0) q? p_0(m_0) p_1! q(m_1)$ projection on sends of w $w|_S = p_0! q(m_0)$ $p_1! q(m_1)$

Executions

For a CFM \mathcal{A} .

- Tr(A) set of all executions of A.
- *Tr*_{rdv}(*A*) set of all executions where sends are directly followed by their matching receive.



$$Tr_{rdv}(\mathcal{A})|_{S} = (ab)^{*}(a + \varepsilon)$$

 $Tr(\mathcal{A})|_{S} \cap a^{*}b^{*} = \{a^{n}b^{n} \mid n \geq 0\}$, not regular.

Send-Synchronizability

A CFM \mathcal{A} is called *sendsend-synchronizable* if $Tr(\mathcal{A})|_{S} = Tr_{rdv}(\mathcal{A})|_{S}$.

____ History of Send-synchronizability ____

• [Basu & Bultan, 2012/2016] Send-synchronizability is decidable for mailbox and peer-to-peer CFMs.

— History of Send-synchronizability —

- [Basu & Bultan, 2012/2016] Send-synchronizability is decidable for mailbox and peer-to-peer CFMs.
- [Finkel & Lozes, 2017] Showed that the proofs above were flawed. Send-synchronizability is undecidable for peer-to-peer CFMs. Decidable for ring topology.

_ History of Send-synchronizability ____

- [Basu & Bultan, 2012/2016] Send-synchronizability is decidable for mailbox and peer-to-peer CFMs.
- [Finkel & Lozes, 2017] Showed that the proofs above were flawed. Send-synchronizability is undecidable for peer-to-peer CFMs. Decidable for ring topology.
- [Di Giusto, Laverza & Peters, 2024] Send-synchronizability is undecidable for CFMs with final states.

_ History of Send-synchronizability ____

- [Basu & Bultan, 2012/2016] Send-synchronizability is decidable for mailbox and peer-to-peer CFMs.
- [Finkel & Lozes, 2017] Showed that the proofs above were flawed. Send-synchronizability is undecidable for peer-to-peer CFMs. Decidable for ring topology.
- [Di Giusto, Laverza & Peters, 2024] Send-synchronizability is undecidable for CFMs with final states.
 - Is Send-synchronizability decidable for mailbox CFMs?

If not, is there a subclass of CFMs such that Send-synchronizability is decidable ?

Undecidability (short).

PCP (variant)

A set of pairs $(x_1, y_1), \ldots, (x_K, y_K)$ of words over an alphabet Σ . Is there a sequence of indices $i_1, \ldots, i_n \in \{1, \ldots, K\}$ such that

• $i_1 = 1$

•
$$x_{i_1}\ldots x_{i_n}=y_{i_1}\ldots y_{i_n}$$

•
$$|x_{i_1}\ldots x_{i_n}| \geq |y_{i_1}\ldots y_{i_n}|$$

Undecidability (short)

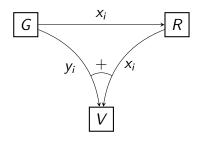
PCP (variant)

A set of pairs $(x_1, y_1), \ldots, (x_K, y_K)$ of words over an alphabet Σ . Is there a sequence of indices $i_1, \ldots, i_n \in \{1, \ldots, K\}$ such that

• $i_1 = 1$

•
$$x_{i_1}\ldots x_{i_n}=y_{i_1}\ldots y_{i_n}$$

•
$$|x_{i_1}\ldots x_{i_n}| \geq |y_{i_1}\ldots y_{i_n}|$$



- Guess guesses the sequence of indices, sends *x_i* to **R**elay and *y_i* to **V**erif.
- Relay either delays letters of x_i to intertwine them with letters of y_i to Verif, or can receive and send anything (dummy).
- Verif checks that the two words are identical. 5

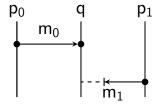
- 2 Send-synchronizability
- 3 1-schedulability

- 4 Fully-matched & Good traces
- **5** 1-sched & Bad traces
- 6 Conclusion

1-schedulability

A trace is a 1-*scheduling* if every send is either followed by its receive, or is unmatched.

 $w = p_0!q(m_0)q?p_0(m_0)p_1!q(m_1)$ is a 1-scheduling

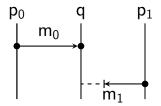


1-schedulability

A trace is a 1-*scheduling* if every send is either followed by its receive, or is unmatched.

A trace is 1-schedulable if it is equivalent to a 1-scheduling.

 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ is a 1-scheduling $w' = p_0!q(m_0) p_1!q(m_1) q?p_0(m_0)$ is 1-schedulable, as $w' \equiv w$

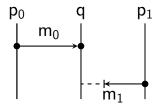


1-schedulability

A trace is a 1-*scheduling* if every send is either followed by its receive, or is unmatched.

A trace is 1-*schedulable* if it is equivalent to a 1-scheduling. A CFM is 1-*schedulable* if all its traces are 1-schedulable.

 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ is a 1-scheduling $w' = p_0!q(m_0) p_1!q(m_1) q?p_0(m_0)$ is 1-schedulable, as $w' \equiv w$

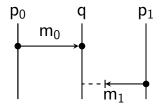


1-schedulability

A trace is a 1-*scheduling* if every send is either followed by its receive, or is unmatched.

A trace is 1-*schedulable* if it is equivalent to a 1-scheduling. A CFM is 1-*schedulable* if all its traces are 1-schedulable.

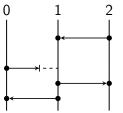
 $w = p_0!q(m_0) q?p_0(m_0) p_1!q(m_1)$ is a 1-scheduling $w' = p_0!q(m_0) p_1!q(m_1) q?p_0(m_0)$ is 1-schedulable, as $w' \equiv w$



Fully-matched 1-schedulings of a CFM = rendez-vous traces.

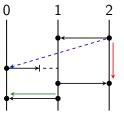
Checking 1-schedulability_

- $<_{\mathbb{P}}$ order between event on same process.
- $\bullet \mbox{ msg}$ order between a send and its receive.
- <_{mb} mailbox order.



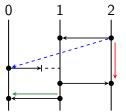
Checking 1-schedulability_

- $<_{\mathbb{P}}$ order between event on same process.
- $\bullet \mbox{ msg}$ order between a send and its receive.
- <_{mb} mailbox order.



Checking 1-schedulability.

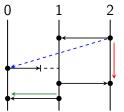
- $<_{\mathbb{P}}$ order between event on same process.
- $\bullet \mbox{ msg}$ order between a send and its receive.
- <_{mb} mailbox order.



Non 1-schedulable iff there is a non-trivial ($<_{\mathbb{P}} \cup <_{mb} \cup msg \cup msg^{-1}$)-cycle.

Checking 1-schedulability.

- $<_{\mathbb{P}}$ order between event on same process.
- $\bullet \mbox{ msg}$ order between a send and its receive.
- <_{mb} mailbox order.



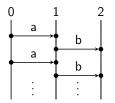
Non 1-schedulable iff there is a non-trivial $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup msg^{-1})$ -cycle.

1-schedulability [Delpy, Muscholl & Sutre 2024]

The question whether a CFM is 1-schedulable is $\rm PSPACE\text{-}complete.$ The language of 1-scheduling of a CFM is regular.

Send-sync & 1-sched_

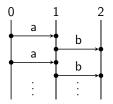
Even for 1-schedulable CFMs, send-synchronizability is still hard:



1-schedulings of \mathcal{A} regular but $Tr(\mathcal{A})|_S$ is not.

Send-sync & 1-sched

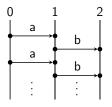
Even for 1-schedulable CFMs, send-synchronizability is still hard:



1-schedulings of \mathcal{A} regular but $Tr(\mathcal{A})|_S$ is not. Need a way to describe $Tr(\mathcal{A})|_S$ from 1-schedulings!

Send-sync & 1-sched

Even for 1-schedulable CFMs, send-synchronizability is still hard:



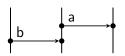
1-schedulings of \mathcal{A} regular but $Tr(\mathcal{A})|_S$ is not. Need a way to describe $Tr(\mathcal{A})|_S$ from 1-schedulings!

Two cases:

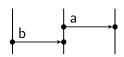
- Restriction of Tr(A) to fully matched traces.
- Include not fully matched traces.

- 2 Send-synchronizability
- 3 1-schedulability
- 4 Fully-matched & Good traces

- **5** 1-sched & Bad traces
- 6 Conclusion



w the 1-scheduling of this MSC has $w|_S = a b$, but exists $w' \equiv w$, with $w'|_S = b a$.



w the 1-scheduling of this MSC has $w|_S = a b$, but exists $w' \equiv w$, with $w'|_S = b a$.

Commutation: $SI \subseteq S \times S$. Let a = p!q(m) and b = p'!q'(m'), $(a, b) \in SI$ if $p \neq p'$, $q \neq q'$ and $q \neq p'$

If $(a, b) \in SI$, $u, v \in S^*$: $uabv \Rightarrow_{SI} ubav$.

Commutation: $SI \subseteq S \times S$. Let a = p!q(m) and b = p'!q'(m'), $(a,b) \in SI$ if $p \neq p'$, $q \neq q'$ and $q \neq p'$ If $(a,b) \in SI$, $u, v \in S^*$: $uabv \Rightarrow_{SI} ubav$.

Commutation: $SI \subseteq S \times S$. Let a = p!q(m) and b = p'!q'(m'), $(a, b) \in SI$ if $p \neq p'$, $q \neq q'$ and $q \neq p'$ If $(a, b) \in SI$, $u, v \in S^*$: $uabv \Rightarrow_{SI} ubav$. $Cl_{SI}(v) = \{v' \in S^* \mid v \stackrel{*}{\Rightarrow}_{SI} v'\}$

Commutation: $SI \subseteq S \times S$. Let a = p!q(m) and b = p'!q'(m'), $(a, b) \in SI$ if $p \neq p'$, $q \neq q'$ and $q \neq p'$ If $(a, b) \in SI$, $u, v \in S^*$: $uabv \Rightarrow_{SI} ubav$. $CI_{SI}(v) = \{v' \in S^* \mid v \stackrel{*}{\Rightarrow}_{SI} v'\}$ If \mathcal{A} 1-schedulable: $Tr_{full-match}(\mathcal{A})|_{S} = Cl_{SI}(Tr_{rdv}(\mathcal{A})|_{S})$.

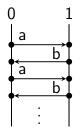
Commutation: $SI \subseteq S \times S$. Let a = p!q(m) and b = p'!q'(m'), $(a, b) \in SI$ if $p \neq p'$, $q \neq q'$ and $q \neq p'$ If $(a, b) \in SI$, $u, v \in S^*$: $uabv \Rightarrow_{SI} ubav$. $Cl_{SI}(v) = \{v' \in S^* \mid v \stackrel{*}{\Rightarrow}_{SI} v'\}$ If \mathcal{A} 1-schedulable: $Tr_{full-match}(\mathcal{A})|_S = Cl_{SI}(Tr_{rdv}(\mathcal{A})|_S)$.

One can check if $\mathcal{L} \subseteq S^*$ regular is closed under *SI*.

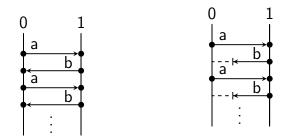
Send-sync for fully-matched 1-schedulable

The question whether a 1-schedulable CFM is send-synchronizable over fully-matched traces is decidable.

___Unmatched sends makes it harder ___

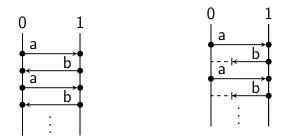


__Unmatched sends makes it harder __



 $(a, b) \notin SI$, but commutations are oblivious to matching of sends.

__Unmatched sends makes it harder __



 $(a, b) \notin SI$, but commutations are oblivious to matching of sends.

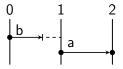
How to account for unmatched sends?

Extended order_

Order caused by "possibility of receive":

 $a \dashrightarrow b$

- b not matched
- $a \parallel b$ (not ordered)

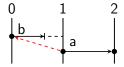


Extended order_

Order caused by "possibility of receive":

 $a \dashrightarrow b$

- *b* not matched
- $a \parallel b$ (not ordered)



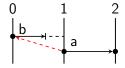
Does not depend on the order of a and b in w.

Extended order_

Order caused by "possibility of receive":

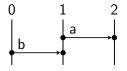
 $a \dashrightarrow b$

- *b* not matched
- $a \parallel b$ (not ordered)



Does not depend on the order of a and b in w.

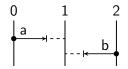
This order is convenient with SI!



Good traces_

We say that $w \equiv_{us} w'$ if

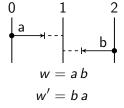
- $w \equiv w'$
- The order of unmatched sends to each *p* is the same in *w* and *w*'



Good traces_

We say that $w \equiv_{us} w'$ if

- $w \equiv w'$
- The order of unmatched sends to each *p* is the same in *w* and *w*'

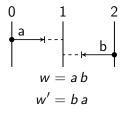


Here $w \equiv w'$ but $w \not\equiv_{us} w'!$

Good traces_

We say that $w \equiv_{us} w'$ if

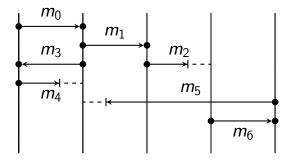
- $w \equiv w'$
- The order of unmatched sends to each *p* is the same in *w* and *w*'



Here $w \equiv w'$ but $w \not\equiv_{us} w'!$

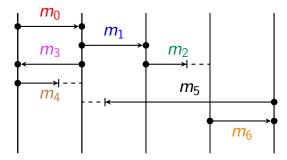
A trace *w* is **good** if there exists 1-scheduling $w' \equiv_{us} w$ with no -----backward arcs.

A trace *w* is **good** if there exists 1-scheduling $w' \equiv_{us} w$ with no -----backward arcs:



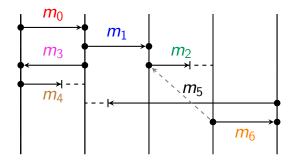
 $w = s_0 r_0 s_1 s_3 r_1 s_2 r_3 s_4 s_5 s_6 r_6$

A trace *w* is **good** if there exists 1-scheduling $w' \equiv_{us} w$ with no -----backward arcs:



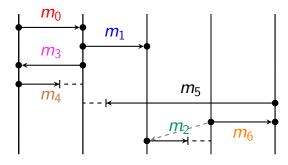
 $w = s_0 r_0 s_1 s_3 r_1 s_2 r_3 s_4 s_5 s_6 r_6$

A trace *w* is **good** if there exists 1-scheduling $w' \equiv_{us} w$ with no -----backward arcs:



 $w = s_0 r_0 s_1 s_3 r_1 s_2 \tilde{r}_3 s_4 \tilde{s}_5 \tilde{s}_6 r_6$

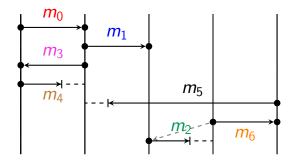
A trace *w* is **good** if there exists 1-scheduling $w' \equiv_{us} w$ with no -----backward arcs:



 $w = s_0 r_0 s_1 s_3 r_1 s_2 \tilde{r_3} s_4 \tilde{s_5} s_6 r_6$ $w' = s_0 r_0 s_1 r_1 s_3 r_3 s_4 s_5 s_6 r_6 s_2$

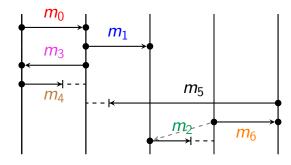
$$w' \equiv_{us} w$$

A trace *w* is **good** if there exists 1-scheduling $w' \equiv_{us} w$ with no -----backward arcs:



 $w = s_0 r_0 s_1 s_3 r_1 s_2 r_3 s_4 s_5 s_6 r_6$ $w' = s_0 r_0 s_1 r_1 s_3 r_3 s_4 s_5 s_6 r_6 s_2$ $w' \equiv_{\mathrm{us}} w.$ $w|_{S} \in Cl_{Sl}(w'|_{S})$

A trace *w* is **good** if there exists 1-scheduling $w' \equiv_{us} w$ with no -----backward arcs:



$$\begin{split} w &= s_0 r_0 s_1 s_3 r_1 s_2 \tilde{r}_3 s_4 s_5 s_6 r_6 & w' \equiv_{\rm us} w. \\ w' &= s_0 r_0 s_1 r_1 s_3 r_3 s_4 s_5 s_6 r_6 s_2 & w|_S \in Cl_{SI}(w'|_S) \end{split}$$

Good traces & Send-synchronizability

If all traces of a CFM \mathcal{A} are good: $Tr(\mathcal{A})|_{S} = Cl_{Sl}(\{w \mid w \text{ is a 1-scheduling of } \mathcal{A}\}|_{S}).$

- 2 Send-synchronizability
- 3 1-schedulability
- 4 Fully-matched & Good traces
- 5 1-sched & Bad traces

Bad traces_

Bad traces prevent send-synchronizability of 1-schedulable CFMs:

 $b a \in Tr(\mathcal{A})|_{S}$. But b and a not ordered, so $a b \in Tr(\mathcal{A})|_{S}$.

Bad traces.

Bad traces prevent send-synchronizability of 1-schedulable CFMs:

 $b a \in Tr(\mathcal{A})|_{S}$. But b and a not ordered, so $a b \in Tr(\mathcal{A})|_{S}$.

If \mathcal{A} is send-synchronizable, then $\mathit{Tr}_{rdv}(\mathcal{A})$ contains

Bad traces.

Bad traces prevent send-synchronizability of 1-schedulable CFMs:

 $b a \in Tr(\mathcal{A})|_{S}$. But b and a not ordered, so $a b \in Tr(\mathcal{A})|_{S}$.

If \mathcal{A} is send-synchronizable, then $\mathit{Tr}_{rdv}(\mathcal{A})$ contains

 ${\cal A}$ will also have the following trace:

Bad traces.

Bad traces prevent send-synchronizability of 1-schedulable CFMs:

 $b a \in Tr(\mathcal{A})|_{S}$. But b and a not ordered, so $a b \in Tr(\mathcal{A})|_{S}$.

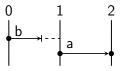
If \mathcal{A} is send-synchronizable, then $\mathit{Tr}_{rdv}(\mathcal{A})$ contains

 \mathcal{A} will also have the following trace: So \mathcal{A} is not 1-schedulable!

_ Extended order: double unmatched _

Recall:

- a --> b
 - *b* unmatched
 - *a* || *b* (not ordered)



_ Extended order: double unmatched _

Recall:

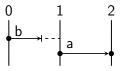
a --> b

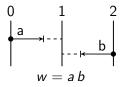
- *b* unmatched
- *a* || *b* (not ordered)

New order:

 $a \ll_{\mathrm{us}}^{w} b$

- *a*, *b* unmatched
- a || b
- *a* is before *b* in *w*





_ Extended order: double unmatched _

Recall:

a --> b

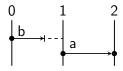
- *b* unmatched
- $a \parallel b$ (not ordered)

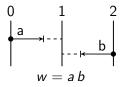
New order:

 $a \ll_{\mathrm{us}}^w b$

- a, b unmatched
- a || b
- *a* is before *b* in *w*

Rem: $u \equiv_{us} v$ iff $\ll_{us}^{u} = \ll_{us}^{v}$.





A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no -----backward arcs

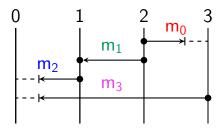
Detecting bad traces _____

A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no -----backward arcs

A trace w is **bad** iff it has a $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup -- \rightarrow \cup \ll_{us}^{w})$ -cycle

A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no -----backward arcs

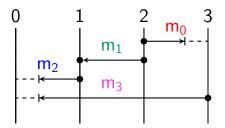
A trace w is **bad** iff it has a $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup - \rightarrow \cup \ll_{us}^{w})$ -cycle



 $w = s_0 s_1 r_1 s_2 s_3$

A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no -----backward arcs

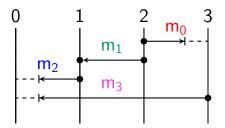
A trace w is **bad** iff it has a $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup - \rightarrow \cup \ll_{us}^{w})$ -cycle



 $w = s_0 s_1 r_1 s_2 s_3$ $s_0 <_{\mathbb{P}} s_1 \operatorname{msg} r_1 <_{\mathbb{P}} s_2 \ll_{\operatorname{us}}^{w} s_3 \dashrightarrow s_0$

A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no -----backward arcs

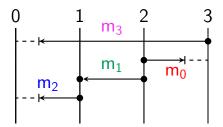
A trace w is **bad** iff it has a $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup - \rightarrow \cup \ll_{us}^{w})$ -cycle



 $w = s_0 s_1 r_1 s_2 s_3$ $s_0 <_{\mathbb{P}} s_1 \operatorname{msg} r_1 <_{\mathbb{P}} s_2 \ll_{\mathrm{us}}^{w} s_3 \dashrightarrow s_0$ $w' = s_3 s_0 s_1 r_1 s_2.$

A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no ----backward arcs

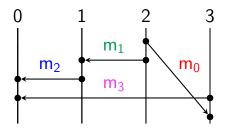
A trace w is **bad** iff it has a $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup -- \rightarrow \cup \ll_{us}^{w})$ -cycle



 $w = s_0 s_1 r_1 s_2 s_3$ $s_0 <_{\mathbb{P}} s_1 \operatorname{msg} r_1 <_{\mathbb{P}} s_2 \ll_{\mathrm{us}}^{w} s_3 \dashrightarrow s_0$ $w' = s_3 s_0 s_1 r_1 s_2.$

A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no ----backward arcs

A trace w is **bad** iff it has a $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup - \rightarrow \cup \ll_{us}^{w})$ -cycle



 $w = s_0 s_1 r_1 s_2 s_3$ $s_0 <_{\mathbb{P}} s_1 \operatorname{msg} r_1 <_{\mathbb{P}} s_2 \ll_{\mathrm{us}}^{w} s_3 \dashrightarrow s_0$ $w' = s_3 s_0 s_1 r_1 s_2.$

A trace w is good if some 1-scheduling $w \equiv_{\rm us} w'$ exists with no -----backward arcs

A trace w is **bad** iff it has a $(<_{\mathbb{P}} \cup <_{mb} \cup msg \cup - \rightarrow \cup \ll_{us}^{w})$ -cycle

Bad traces and send-synchronizability

If a 1-schedulable CFM has some bad trace, then it is not send-synchronizable.

Checking if a 1-schedulable CFM has some bad trace is $\ensuremath{\operatorname{PSPACE}}$ -complete.

$$s_0 \ll_{\mathbb{P}} s_1 \operatorname{msg} r_1 \ll_{\mathbb{P}} s_2 \ll_{\mathrm{us}}^w s_3 \dashrightarrow s_0$$
$$w' = s_3 s_0 s_1 r_1 s_2.$$

Conclusion _____

• Send-synchronizability is undecidable for mailbox CFMs.

Conclusion ____

- Send-synchronizability is undecidable for mailbox CFMs.
- Checking send-synchronizability is **PSPACE** for the subclass of 1-schedulable CFMs (property that can be checked in **PSPACE**).

Conclusion ____

- Send-synchronizability is undecidable for mailbox CFMs.
- Checking send-synchronizability is **PSPACE** for the subclass of 1-schedulable CFMs (property that can be checked in **PSPACE**).

Technique used for the proof could be used for other problems (realizability?).

Conclusion _

- Send-synchronizability is undecidable for mailbox CFMs.
- Checking send-synchronizability is **PSPACE** for the subclass of 1-schedulable CFMs (property that can be checked in **PSPACE**).

Technique used for the proof could be used for other problems (realizability?).

1-schedulability is very restrictive : Can we extend to *k*-schedulability ?

A 2-exchange.

Conclusion _

- Send-synchronizability is undecidable for mailbox CFMs.
- Checking send-synchronizability is **PSPACE** for the subclass of 1-schedulable CFMs (property that can be checked in **PSPACE**).

Technique used for the proof could be used for other problems (realizability?).

1-schedulability is very restrictive : Can we extend to *k*-schedulability ?

A 2-exchange.

THANK YOU

CFM for Pre-MPCP reduction.

