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What about communicating automata?
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finite message alphabet,
¢, | ¢,y )
oo e Reliable unbounded
¢ ¢l point-to-point FIFO channels

Fixed, finite set of processes, e.g. {p,q,r}
Global acceptance condition

1[Brand, Zafiropulo 1983]
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Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!
e (un)decidability vs. expressiveness
e positive results for implementability

e decidable restrictions/sub-approximations: e.g.,
bounded channels

[In this talk: mainly unbounded, sometimes bounded ]
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Linearizations and bounded MSCs

(p'q) (p'q) (¢'p) (¢'p) (¢'p) (p?q) (p?q) (p?7q) 3-bounded

(plq) (p'q) (a'p) (p?q) (¢'p) (p?q) (¢'p) (P?q) 2-bounded

M is 4B-bounded if at least one linearization is B-bounded
V B-bounded if all linearizations are B-bounded
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MSO — Automata What about MSCs?
Inductive translation:

Conjunction — Product

Disjunction — Union

Existential quantification — Projection
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Negation — Complement

Theorem (Bollig, Leucker 2006)
CFMs are not closed under complement.
Thus CFM # MSOI<, <.
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HMSCs are “too” expressive
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—

L(H) is not recognisable by a CFM

as many messages between p and q and between p' and ¢ ~ a"b"

— We need restrictions!
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Connectivity

e A cMSC M is connected if the undirected graph
(events(M), < U <) is connected.

e M is weakly connected if it has a connected undirected
communication graph.
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Connectivity

e A cMSC M is connected if the undirected graph
(events(M), < U <) is connected.

e M is weakly connected if it has a connected undirected

communication graph.

A

qi

e.g., is both connected and weakly connected, while

is weakly connected but not connected.

LS
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label M --- M, every cMSC in the product
My o---0oM, is connected.

e His if for all accepting path labeled M, ... M, in H,
M, o--- 0o M, contains an MSC (= a cMSC with no
unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)
L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some
CFM.

What about HMSCs that are connected but not safe?
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L(#) is not 3B-bounded, but is
recognisable by a CFM.
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Theorem (Bollig, F., Gastin 2025)
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Connected HMSCs — Implementability

Theorem (Bollig, F., Gastin 2025)
Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent
CFEM).

Step 1: show that EMSO-definable languages of CMSs are
closed under

e union
e concatenation
e iteration if all cMSCs in the language are connected.

Step 2: Apply standard automata-to-expressions translation
techniques.
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Satisfiability

Given an HMSC #, is L(H) # @7

Theorem (Genest, Kuske, Muscholl 2006)
Satisfiability is decidable for safe weakly connected HM-
SCs.

Theorem (Bollig, F., Gastin 2025)

e Emptiness of unrestricted HMSCs is undecidable, even
with a message alphabet of size one.

e With a message alphabet of size at least two, emtpiness
of HMSCs is undecidable even for loop-connected
HMSCs. This is true even with only two processes, or
three processes and flat HSMCs.
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Undecidability for loop-connected HMSCs

Reduction from Post Correspondance Problem:

f,g: A" — B*
a p a p
a
1. k2
M M
a p ¢ p v

Mf M9
There exists u € A" such that f(u) = g(u) if and only if
(T (5) () (S )" o
acA a€A beB

acA 19



Conclusion

safe weakly loop-connected HSMC if
existentially bounded [GKM'06],
but unrestricted HMSC otherwise

/-\ \
CFMs HMSCs
\ for safe weakly loop-connected
[BFG'21] \\, J_,' HSMCs [GKM'06]

for loop-connected HSMCs [BFG'25]
EMSO|«, <]

>

! when existentially-bounded [GKM'06]
¥

MSO[<, <]
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Some open questions

¢ Relation between our definition past ones: Is every
safe and weakly loop-connected HMSC equivalent to a
loop-connected HMSC?

¢ Refinements of the undecidability results, e.g., does
undecidability holds for loop-connected and flat HMSCs
with two processes?

e Is there an interesting subclass of (loop-connected or not)
HMSCs beyond existentially bounded MSCs with
decidable satisfiability/model checking problems?

e What are the CFMs that correspond to loop-connected
HMSCs?
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Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?
e Parameterized communicating automata [Bollig, 2014|
e Other possible definitions: registers to store process ids,
dynamic process creation, etc.
e Difficulties

e even more undecidable
e comparisons with logic are more subtle

e Enrich HMSCs with unbounded parallel composition or
similar operators?

Thoughts?
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Thank you!



