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Regular Languages of Words

Finite automata

a

b

b, c a, b, c

Monadic Second-Order Logic

∀x. a(x) =⇒ ∃y. x < y ∧ b(y)

Regular Expressions

((a+ b+ c)∗b+ c)∗

[Büchi 1960,

Elgot 1961

Trakhtenbrot 1962]

[Kleene 1956]

L = {aab, bcc,
acabc, · · · }
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What about concurrent systems?
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Regular Languages of Words

Finite automata
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Monadic Second-Order Logic

∀x. a(x) =⇒ ∃y. x < y ∧ b(y)
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What about communicating automata?
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Communicating finite-state machines (CFMs)1
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Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}
Global acceptance condition

1[Brand, Zafiropulo 1983]

2



Communicating finite-state machines (CFMs)1

p

b, !q�

b, !r�

a, !q�

a, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}

Global acceptance condition

1[Brand, Zafiropulo 1983]

2



Communicating finite-state machines (CFMs)1

p

b, !q�

b, !r�

a, !q�

a, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}

Global acceptance condition

1[Brand, Zafiropulo 1983]

2



Communicating finite-state machines (CFMs)1

p b, !q�

b, !r�

a, !q�

a, !r�

q
c, ?p�

c, !r�

c, ?p�

c, !r�

r b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}

Global acceptance condition

1[Brand, Zafiropulo 1983]

2



Communicating finite-state machines (CFMs)1

p b, !q�

b, !r�

a, !q�

a, !r�

q
c, ?p�

c, !r�

c, ?p�

c, !r�

r b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}
Global acceptance condition

1[Brand, Zafiropulo 1983]

2



Message Sequence Charts (MSC)

The language of a CFM is a set of Message Sequence Charts.
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Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded
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Linearizations and bounded MSCs
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Monadic Second-Order logic (MSO) over MSCs

φ ::=

a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y )

¬(x ≤ y) ∧ ¬(y ≤ x)
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Let’s get back to words...

MSO → Automata

What about MSCs?

Inductive translation:

• · · ·
• Conjunction → Product

✓

• Disjunction → Union

✓

• Existential quantification → Projection

✓

• Negation → Complement

✗

Theorem (Bollig, Leucker 2006)

CFMs are not closed under complement.

Thus CFM ̸= MSO[≤,◁].

8
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Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)
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High-level message sequence charts (HMSCs)

(or message sequence graphs (MSGs))
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High-level message sequence charts (HMSCs)

(or message sequence graphs (MSGs))

p

q

M1

p

q

M2

p

q

M3

H =

p

q
∈ M1 ·M2 ·M2 ·M3 ⊆ L(H)
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HMSCs are “too” expressive

p

q

p′

q′

H =

L(H) is not recognisable by a CFM

as many messages between p and q and between p′ and q′ ≈ anbn

→ We need restrictions!
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Connectivity

• A cMSC M is connected if the undirected graph

(events(M),≤ ∪≤−1) is connected.

• M is weakly connected if it has a connected undirected

communication graph.

e.g.,
p

q

is both connected and weakly connected, while

p

q

is weakly connected but not connected.
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Subclasses of HMSCs

• H is (weakly) loop-connected if for all loops in H with

label M1 · · ·Mn, every cMSC in the product

M1 ◦ · · · ◦Mn is connected.

• H is safe if for all accepting path labeled M1 . . .Mn in H,

M1 ◦ · · · ◦Mn contains an MSC (= a cMSC with no

unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)

L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some

CFM.

What about HMSCs that are connected but not safe?
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Example

1 2 3 4 5
p q p q p q p q

p q p q p q p q

L(H) is not ∃B-bounded, but is

recognisable by a CFM.

p q

16



Connected HMSCs – Implementability

Theorem (Bollig, F., Gastin 2025)

Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent

CFM).

Step 1: show that EMSO-definable languages of CMSs are

closed under

• union

• concatenation

• iteration if all cMSCs in the language are connected.

Step 2: Apply standard automata-to-expressions translation

techniques.
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Satisfiability

Satisfiability: Given an HMSC H, is L(H) ̸= ∅?

Theorem (Genest, Kuske, Muscholl 2006)

Satisfiability is decidable for safe weakly connected HM-

SCs.

Theorem (Bollig, F., Gastin 2025)

• Emptiness of unrestricted HMSCs is undecidable, even

with a message alphabet of size one.

• With a message alphabet of size at least two, emtpiness

of HMSCs is undecidable even for loop-connected

HMSCs. This is true even with only two processes, or

three processes and flat HSMCs.
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Undecidability for loop-connected HMSCs

Reduction from Post Correspondance Problem:

f, g : A∗ → B∗

pq r

M !
a

a
a

pq r

M?
b

b
b

pq r

Mf
a

a

f(a)
{

pq r

Mg
a

a
}

g(a)

There exists u ∈ A+ such that f(u) = g(u) if and only if(∑
a∈A

M !
a

)+

·
(∑

a∈A

M f
a

)+

·
(∑

a∈A

M g
a

)+

·
(∑

b∈B

M ?
b

)+

̸= ∅
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Conclusion

CFMs

EMSO[◁,≤]

MSO[◁,≤]

HMSCs

[BFG’21]

when existentially-bounded [GKM’06]

safe weakly loop-connected HSMC if

existentially bounded [GKM’06],

but unrestricted HMSC otherwise

for safe weakly loop-connected

HSMCs [GKM’06]

for loop-connected HSMCs [BFG’25]
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Some open questions

• Relation between our definition past ones: Is every

safe and weakly loop-connected HMSC equivalent to a

loop-connected HMSC?

• Refinements of the undecidability results, e.g., does

undecidability holds for loop-connected and flat HMSCs

with two processes?

• Is there an interesting subclass of (loop-connected or not)

HMSCs beyond existentially bounded MSCs with

decidable satisfiability/model checking problems?

• What are the CFMs that correspond to loop-connected

HMSCs?
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Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?
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Thank you!
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