
High-Level Message Sequence Charts

Marie Fortin

IRIF, CNRS, Université Paris Cité

based on joint work with Benedikt Bollig and Paul Gastin

PaVeDyS meeting, May 13, 2025

0

Regular Languages of Words

Finite automata

a

b

b, c a, b, c

Monadic Second-Order Logic

∀x. a(x) =⇒ ∃y. x < y ∧ b(y)

Regular Expressions

((a+ b+ c)∗b+ c)∗

[Büchi 1960,

Elgot 1961

Trakhtenbrot 1962]

[Kleene 1956]

L = {aab, bcc,
acabc, · · · }

1

Regular Languages of Words

Finite automata

a

b

b, c a, b, c

Monadic Second-Order Logic

∀x. a(x) =⇒ ∃y. x < y ∧ b(y)

Regular Expressions

((a+ b+ c)∗b+ c)∗

[Büchi 1960,

Elgot 1961

Trakhtenbrot 1962]

[Kleene 1956]

L = {aab, bcc,
acabc, · · · }

What about concurrent systems?

1

Regular Languages of Words

Finite automata

a

b

b, c a, b, c

Monadic Second-Order Logic

∀x. a(x) =⇒ ∃y. x < y ∧ b(y)

Regular Expressions

((a+ b+ c)∗b+ c)∗

[Büchi 1960,

Elgot 1961

Trakhtenbrot 1962]

[Kleene 1956]

L = {aab, bcc,
acabc, · · · }

What about communicating automata?

1

Communicating finite-state machines (CFMs)1

p

b, !q�

b, !r�

a, !q�

a, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}
Global acceptance condition

1[Brand, Zafiropulo 1983]

2

Communicating finite-state machines (CFMs)1

p

b, !q�

b, !r�

a, !q�

a, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}

Global acceptance condition

1[Brand, Zafiropulo 1983]

2

Communicating finite-state machines (CFMs)1

p

b, !q�

b, !r�

a, !q�

a, !r�

q

c, ?p�

c, !r�

c, ?p�

c, !r�

r

b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}

Global acceptance condition

1[Brand, Zafiropulo 1983]

2

Communicating finite-state machines (CFMs)1

p b, !q�

b, !r�

a, !q�

a, !r�

q
c, ?p�

c, !r�

c, ?p�

c, !r�

r b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}

Global acceptance condition

1[Brand, Zafiropulo 1983]

2

Communicating finite-state machines (CFMs)1

p b, !q�

b, !r�

a, !q�

a, !r�

q
c, ?p�

c, !r�

c, ?p�

c, !r�

r b, ?p�

b, ?q�

a, ?p�

a, ?q�

Reliable unbounded

point-to-point FIFO channels

One finite automaton

for each process

• Finite input alphabet,

e.g. Σ = {a, b, c}
• Sends/receives from a

finite message alphabet,

e.g. {�,�}

Fixed, finite set of processes, e.g. {p, q, r}
Global acceptance condition

1[Brand, Zafiropulo 1983]

2

Message Sequence Charts (MSC)

The language of a CFM is a set of Message Sequence Charts.

p b, !q�

b, !r�

a, !q�

a, !r�

q

1 0 2

c, ?p�

c, !r�

c, ?p�

c, !r�

r b, ?p�

b, ?q�

a, ?p�

a, ?q�

a b b a b a

� � �� � �

c c c c c c

� � �

� � �0 1

0

2

0

2

0

a b a b b a

� � �� � �

3

Message Sequence Charts (MSC)

The language of a CFM is a set of Message Sequence Charts.

p b, !q�

b, !r�

a, !q�

a, !r�

q

1 0 2

c, ?p�

c, !r�

c, ?p�

c, !r�

r b, ?p�

b, ?q�

a, ?p�

a, ?q�

a b b a b a
� � �� � �

c c c c c c
� � �

� � �0 1

0

2

0

2

0

a b a b b a
� � �� � �

3

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting?

No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Undecidability

CFM with ≥ 2 processes can easily simulate Turing machines

→ Most decision problems for CFMs are undecidable:

emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

• positive results for implementability

• decidable restrictions/sub-approximations: e.g.,

bounded channels

In this talk: mainly unbounded, sometimes bounded

4

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1

0

1

2

3 4 5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

0

2

3 4 5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3

2

1

4 5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4

2

2

5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

2

3

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6
2

2

7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7
2

1

8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7 8
2

0

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7 8

9

1

0

10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7 8

9 10

0

0

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

B-bounded = at most B pending messages in each channel

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

B-bounded = at most B pending messages in each channel

5

Linearizations and bounded MSCs

p

q

pending

pending

1 2

3 4 5

6 7 8

9 10

1 2

3

4

5

6

7

8

9 10

(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) 3-bounded

(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p) 2-bounded

. . .

M is ∃B-bounded if at least one linearization is B-bounded

∀B-bounded if all linearizations are B-bounded

5

What about Kleene and Büchi theorems?

CFMs

Logic?

Regular Expressions?

6

What about Kleene and Büchi theorems?

CFMs

Logic?

Regular Expressions?

6

What about Kleene and Büchi theorems?

CFMs

Logic?

Regular Expressions?

6

Monadic Second-Order logic (MSO) over MSCs

φ ::=

a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

7

Monadic Second-Order logic (MSO) over MSCs

φ ::= a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

7

Monadic Second-Order logic (MSO) over MSCs

φ ::= a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

7

Monadic Second-Order logic (MSO) over MSCs

φ ::= a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

y

x

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

7

Monadic Second-Order logic (MSO) over MSCs

φ ::= a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

y

x

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

7

Monadic Second-Order logic (MSO) over MSCs

φ ::= a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

7

Monadic Second-Order logic (MSO) over MSCs

φ ::= a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x)

7

Monadic Second-Order logic (MSO) over MSCs

φ ::= a(x) | p(x) label/process of event x

| x → y process successor

| x◁ y message relation

| x ≤ y happened-before

| ¬φ | φ ∨ φ | ∃x. φ | ∃X. φ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Example: mutual exclusion ¬(∃x. ∃y. c(x) ∧ c(y) ∧ x ∥ y)

¬(x ≤ y) ∧ ¬(y ≤ x) 7

Let’s get back to words...

MSO → Automata

What about MSCs?

Inductive translation:

• · · ·
• Conjunction → Product

✓

• Disjunction → Union

✓

• Existential quantification → Projection

✓

• Negation → Complement

✗

Theorem (Bollig, Leucker 2006)

CFMs are not closed under complement.

Thus CFM ̸= MSO[≤,◁].

8

Let’s get back to words...

MSO → Automata What about MSCs?

Inductive translation:

• · · ·
• Conjunction → Product ✓

• Disjunction → Union ✓

• Existential quantification → Projection ✓

• Negation → Complement

✗

Theorem (Bollig, Leucker 2006)

CFMs are not closed under complement.

Thus CFM ̸= MSO[≤,◁].

8

Let’s get back to words...

MSO → Automata What about MSCs?

Inductive translation:

• · · ·
• Conjunction → Product ✓

• Disjunction → Union ✓

• Existential quantification → Projection ✓

• Negation → Complement ✗

Theorem (Bollig, Leucker 2006)

CFMs are not closed under complement.

Thus CFM ̸= MSO[≤,◁].

8

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)

Over finite MSCs, CFM = EMSO[◁,→] ⊊ MSO[◁,→].

Theorem (Bollig, F., Gastin 2018 & 2021)

CFM = EMSO[◁,≤]

Theorem (Genest, Kuske, Muscholl 2006)

Over existentially bounded MSCs, CFM = MSO[◁,≤].

9

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)

Over finite MSCs, CFM = EMSO[◁,→] ⊊ MSO[◁,→].

Theorem (Bollig, F., Gastin 2018 & 2021)

CFM = EMSO[◁,≤]

Theorem (Genest, Kuske, Muscholl 2006)

Over existentially bounded MSCs, CFM = MSO[◁,≤].

9

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)

Over finite MSCs, CFM = EMSO[◁,→] ⊊ MSO[◁,→].

Theorem (Bollig, F., Gastin 2018 & 2021)

CFM = EMSO[◁,≤]

Theorem (Genest, Kuske, Muscholl 2006)

Over existentially bounded MSCs, CFM = MSO[◁,≤].

9

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)

Over finite MSCs, CFM = EMSO[◁,→] ⊊ MSO[◁,→].

Theorem (Bollig, F., Gastin 2018 & 2021)

CFM = EMSO[◁,≤]

Theorem (Genest, Kuske, Muscholl 2006)

Over existentially bounded MSCs, CFM = MSO[◁,≤].

9

Where we are

CFMs

EMSO[◁,≤]

= EMSO[→,◁]

MSO[◁,≤]

Regular Expressions?

[Bollig,F.,Gastin 2021]

[Genest, Kuske, Muscholl 2006]when existentially-bounded

10

Where we are

CFMs

EMSO[◁,≤]

= EMSO[→,◁]

MSO[◁,≤]

Regular Expressions?

[Bollig,F.,Gastin 2021]

[Genest, Kuske, Muscholl 2006]when existentially-bounded

10

Concatenation and compositional MSCs

p

q

◦
p

q

=
p

q

11

Concatenation and compositional MSCs

p

q

◦
p

q

=

p

q

,
p

q

NB:
p

q

is not a compositional MSC (not FIFO)

11

Concatenation and compositional MSCs

p

q

◦
p

q

=

p

q

,
p

q

NB:

p

q

is not a compositional MSC (not FIFO)

11

Concatenation and compositional MSCs

p

q
� �

◦
p

q

� =

p

q
� �

� ,
p

q �

p

q
� �

◦
p

q

� =

p

q
� �

�

11

Concatenation and compositional MSCs

p

q
� �

◦
p

q

� =

p

q
� �

� ,
p

q �

p

q
� �

◦
p

q

� =

p

q
� �

�

11

High-level message sequence charts (HMSCs)

(or message sequence graphs (MSGs))

p

q

M1

p

q

M2

p

q

M3

H =

12

High-level message sequence charts (HMSCs)

(or message sequence graphs (MSGs))

p

q

M1

p

q

M2

p

q

M3

H =

p

q
∈ M1 ·M2 ·M2 ·M3 ⊆ L(H)

12

HMSCs are “too” expressive

p

q

p′

q′

H =

L(H) is not recognisable by a CFM

as many messages between p and q and between p′ and q′ ≈ anbn

→ We need restrictions!

13

HMSCs are “too” expressive

p

q

p′

q′

H =

L(H) is not recognisable by a CFM

as many messages between p and q and between p′ and q′ ≈ anbn

→ We need restrictions!

13

HMSCs are “too” expressive

p

q

p′

q′

H =

L(H) is not recognisable by a CFM

as many messages between p and q and between p′ and q′ ≈ anbn

→ We need restrictions!

13

Connectivity

• A cMSC M is connected if the undirected graph

(events(M),≤ ∪≤−1) is connected.

• M is weakly connected if it has a connected undirected

communication graph.

e.g.,
p

q

is both connected and weakly connected, while

p

q

is weakly connected but not connected.

14

Connectivity

• A cMSC M is connected if the undirected graph

(events(M),≤ ∪≤−1) is connected.

• M is weakly connected if it has a connected undirected

communication graph.

e.g.,
p

q

is both connected and weakly connected, while

p

q

is weakly connected but not connected.

14

Subclasses of HMSCs

• H is (weakly) loop-connected if for all loops in H with

label M1 · · ·Mn, every cMSC in the product

M1 ◦ · · · ◦Mn is connected.

• H is safe if for all accepting path labeled M1 . . .Mn in H,

M1 ◦ · · · ◦Mn contains an MSC (= a cMSC with no

unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)

L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some

CFM.

What about HMSCs that are connected but not safe?

15

Subclasses of HMSCs

• H is (weakly) loop-connected if for all loops in H with

label M1 · · ·Mn, every cMSC in the product

M1 ◦ · · · ◦Mn is connected.

• H is safe if for all accepting path labeled M1 . . .Mn in H,

M1 ◦ · · · ◦Mn contains an MSC (= a cMSC with no

unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)

L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some

CFM.

What about HMSCs that are connected but not safe?

15

Subclasses of HMSCs

• H is (weakly) loop-connected if for all loops in H with

label M1 · · ·Mn, every cMSC in the product

M1 ◦ · · · ◦Mn is connected.

• H is safe if for all accepting path labeled M1 . . .Mn in H,

M1 ◦ · · · ◦Mn contains an MSC (= a cMSC with no

unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)

L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some

CFM.

What about HMSCs that are connected but not safe?

15

Subclasses of HMSCs

• H is (weakly) loop-connected if for all loops in H with

label M1 · · ·Mn, every cMSC in the product

M1 ◦ · · · ◦Mn is connected.

• H is safe if for all accepting path labeled M1 . . .Mn in H,

M1 ◦ · · · ◦Mn contains an MSC (= a cMSC with no

unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)

L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some

CFM.

What about HMSCs that are connected but not safe?

15

Example

1 2 3 4 5
p q p q p q p q

p q p q p q p q

L(H) is not ∃B-bounded, but is

recognisable by a CFM.

p q

16

Connected HMSCs – Implementability

Theorem (Bollig, F., Gastin 2025)

Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent

CFM).

Step 1: show that EMSO-definable languages of CMSs are

closed under

• union

• concatenation

• iteration if all cMSCs in the language are connected.

Step 2: Apply standard automata-to-expressions translation

techniques.

17

Connected HMSCs – Implementability

Theorem (Bollig, F., Gastin 2025)

Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent

CFM).

Step 1: show that EMSO-definable languages of CMSs are

closed under

• union

• concatenation

• iteration if all cMSCs in the language are connected.

Step 2: Apply standard automata-to-expressions translation

techniques.

17

Connected HMSCs – Implementability

Theorem (Bollig, F., Gastin 2025)

Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent

CFM).

Step 1: show that EMSO-definable languages of CMSs are

closed under

• union

• concatenation

• iteration if all cMSCs in the language are connected.

Step 2: Apply standard automata-to-expressions translation

techniques.

17

Satisfiability

Satisfiability: Given an HMSC H, is L(H) ̸= ∅?

Theorem (Genest, Kuske, Muscholl 2006)

Satisfiability is decidable for safe weakly connected HM-

SCs.

Theorem (Bollig, F., Gastin 2025)

• Emptiness of unrestricted HMSCs is undecidable, even

with a message alphabet of size one.

• With a message alphabet of size at least two, emtpiness

of HMSCs is undecidable even for loop-connected

HMSCs. This is true even with only two processes, or

three processes and flat HSMCs.

18

Satisfiability

Satisfiability: Given an HMSC H, is L(H) ̸= ∅?

Theorem (Genest, Kuske, Muscholl 2006)

Satisfiability is decidable for safe weakly connected HM-

SCs.

Theorem (Bollig, F., Gastin 2025)

• Emptiness of unrestricted HMSCs is undecidable, even

with a message alphabet of size one.

• With a message alphabet of size at least two, emtpiness

of HMSCs is undecidable even for loop-connected

HMSCs. This is true even with only two processes, or

three processes and flat HSMCs.

18

Satisfiability

Satisfiability: Given an HMSC H, is L(H) ̸= ∅?

Theorem (Genest, Kuske, Muscholl 2006)

Satisfiability is decidable for safe weakly connected HM-

SCs.

Theorem (Bollig, F., Gastin 2025)

• Emptiness of unrestricted HMSCs is undecidable, even

with a message alphabet of size one.

• With a message alphabet of size at least two, emtpiness

of HMSCs is undecidable even for loop-connected

HMSCs. This is true even with only two processes, or

three processes and flat HSMCs.

18

Undecidability for loop-connected HMSCs

Reduction from Post Correspondance Problem:

f, g : A∗ → B∗

pq r

M !
a

a
a

pq r

M?
b

b
b

pq r

Mf
a

a

f(a)
{

pq r

Mg
a

a
}

g(a)

There exists u ∈ A+ such that f(u) = g(u) if and only if(∑
a∈A

M !
a

)+

·
(∑

a∈A

M f
a

)+

·
(∑

a∈A

M g
a

)+

·
(∑

b∈B

M ?
b

)+

̸= ∅
19

Conclusion

CFMs

EMSO[◁,≤]

MSO[◁,≤]

HMSCs

[BFG’21]

when existentially-bounded [GKM’06]

safe weakly loop-connected HSMC if

existentially bounded [GKM’06],

but unrestricted HMSC otherwise

for safe weakly loop-connected

HSMCs [GKM’06]

for loop-connected HSMCs [BFG’25]

20

Some open questions

• Relation between our definition past ones: Is every

safe and weakly loop-connected HMSC equivalent to a

loop-connected HMSC?

• Refinements of the undecidability results, e.g., does

undecidability holds for loop-connected and flat HMSCs

with two processes?

• Is there an interesting subclass of (loop-connected or not)

HMSCs beyond existentially bounded MSCs with

decidable satisfiability/model checking problems?

• What are the CFMs that correspond to loop-connected

HMSCs?

21

Some open questions

• Relation between our definition past ones: Is every

safe and weakly loop-connected HMSC equivalent to a

loop-connected HMSC?

• Refinements of the undecidability results, e.g., does

undecidability holds for loop-connected and flat HMSCs

with two processes?

• Is there an interesting subclass of (loop-connected or not)

HMSCs beyond existentially bounded MSCs with

decidable satisfiability/model checking problems?

• What are the CFMs that correspond to loop-connected

HMSCs?

21

Some open questions

• Relation between our definition past ones: Is every

safe and weakly loop-connected HMSC equivalent to a

loop-connected HMSC?

• Refinements of the undecidability results, e.g., does

undecidability holds for loop-connected and flat HMSCs

with two processes?

• Is there an interesting subclass of (loop-connected or not)

HMSCs beyond existentially bounded MSCs with

decidable satisfiability/model checking problems?

• What are the CFMs that correspond to loop-connected

HMSCs?

21

Some open questions

• Relation between our definition past ones: Is every

safe and weakly loop-connected HMSC equivalent to a

loop-connected HMSC?

• Refinements of the undecidability results, e.g., does

undecidability holds for loop-connected and flat HMSCs

with two processes?

• Is there an interesting subclass of (loop-connected or not)

HMSCs beyond existentially bounded MSCs with

decidable satisfiability/model checking problems?

• What are the CFMs that correspond to loop-connected

HMSCs?

21

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized

systems?

• Parameterized communicating automata [Bollig, 2014]

• Other possible definitions: registers to store process ids,

dynamic process creation, etc.

• Difficulties

• even more undecidable

• comparisons with logic are more subtle

• Enrich HMSCs with unbounded parallel composition or

similar operators?

Thoughts?

22

Thank you!

22

