High-Level Message Sequence Charts

Marie Fortin
IRIF, CNRS, Université Paris Cité

based on joint work with Benedikt Bollig and Paul Gastin

PaVeDyS meeting, May 13, 2025

Regular Languages of Words

[Kleene 1956]

'Finite automata | /\

b, c L b,c 'Regular Expressions
((a+bd+c)b+o)

b

[Biichi 1960, L = {aab, bee,
Elgot 1961 acabe, -+ }
Trakhtenbrot 1962]

Monadic Second-Order Logic\'
Ve.a(r) = Jy.o <y Aby)

Regular Languages of Words

[Kleene 1956]

'Finite automata | /\

b, c L b,c 'Regular Expressions
((a+b+c)b+c)*
| . o y
[Biichi 1960, L = {aab, bee,
Elgot 1961 acabe, - - - }

Trakhtenbrot 1962] \
'Monadic Second-Order Logic |
Vz.oa(zr) = Jy.z <y Ab(y)

What about concurrent systems?

Regular Languages of Words

[Kleene 1956]

'Finite automata | /\

b, c L b,c 'Regular Expressions
((a+b+c)b+c)*
| . o y
[Biichi 1960, L = {aab, bee,
Elgot 1961 acabe, - - - }

Trakhtenbrot 1962] \
'Monadic Second-Order Logic |
Vz.oa(zr) = Jy.z <y Ab(y)

What about communicating automata?

Communicating finite-state machines (CFMs)!

K |

1[Brand, Zafiropulo 1983]

Communicating finite-state machines (CFMs)!

K |

Fixed, finite set of processes, e.g. {p,q,r}

1[Brand, Zafiropulo 1983]

Communicating finite-state machines (CFMs)!

K |

Reliable unbounded
point-to-point FIFO channels

Fixed, finite set of processes, e.g. {p,q,r}

1[Brand, Zafiropulo 1983]

Communicating finite-state machines (CFMs)!

One finite automaton
for each process

p b, 1= r b, 7,
éob’ = — éj b7, e Finite input alphabet,
a4 — o, 5 eg X ={a,b,c}
a, !y a,?q)
e Sends/receives from a
finite message alphabet,
¢, | ¢,y)
oo e Reliable unbounded
¢ ¢l point-to-point FIFO channels

Fixed, finite set of processes, e.g. {p,q,r}

1[Brand, Zafiropulo 1983]

Communicating finite-state machines (CFMs)!

One finite automaton
p b1 r b, 7,52 for each process

éj b7, e Finite input alphabet,
a, 7y

&
[

@ 5‘1 , eg X ={a,b,c}
a, !y a,?
! e Sends/receives from a
finite message alphabet,
¢, | ¢,y)
oo e Reliable unbounded
¢ ¢l point-to-point FIFO channels

Fixed, finite set of processes, e.g. {p,q,r}
Global acceptance condition

1[Brand, Zafiropulo 1983]

Message Sequence Charts (MSC)

The language of a CFM is a set of Message Sequence Charts.

p b, ! =
b, ! =

a, !

a, !,

S
IS
S
S
S

Message Sequence Charts (MSC)

The language of a CFM is a set of Message Sequence Charts.

p b, ! =
b, ! =

S

a, !

X X

a, !,

b a b a
<
0 o@\ 0
c c c € €
0 1 5 2 2
¢ =4
b a b b a

Undecidability

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting?

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

e (un)decidability vs. expressiveness

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!
e (un)decidability vs. expressiveness

e positive results for implementability

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!
e (un)decidability vs. expressiveness
e positive results for implementability

e decidable restrictions/sub-approximations: e.g.,

bounded channels

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!
e (un)decidability vs. expressiveness
e positive results for implementability

e decidable restrictions/sub-approximations: e.g.,

bounded channels

Undecidability

CFM with > 2 processes can easily simulate Turing machines

— Most decision problems for CFMs are undecidable:
emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!
e (un)decidability vs. expressiveness
e positive results for implementability

e decidable restrictions/sub-approximations: e.g.,
bounded channels

[In this talk: mainly unbounded, sometimes bounded]

Linearizations and bounded MSCs

Linearizations and bounded MSCs

1 pending

0 pending

Linearizations and bounded MSCs

2 pending

0 pending

Linearizations and bounded MSCs

2 pending

1 pending

Linearizations and bounded MSCs

2 pending

2 pending

Linearizations and bounded MSCs

2 pending

3 pending

Linearizations and bounded MSCs

2 pending

2 pending

Linearizations and bounded MSCs

2 pending

1 pending

Linearizations and bounded MSCs

2 pending

0 pending

Linearizations and bounded MSCs

1 pending

0 pending

Linearizations and bounded MSCs

0 pending

0 pending

Linearizations and bounded MSCs

(p'q) (p'q) (¢'p) (¢'p) (¢'p) (p?q) (p?q) (p?7q) 3-bounded

[B-bounded = at most B pending messages in each channel]

Linearizations and bounded MSCs

(p'q) (p'q) (¢'p) (¢'p) (¢'p) (p?q) (p?q) (p?7q) 3-bounded

(plq) (p'q) (a'p) (p?q) (¢'p) (p?q) (¢'p) (P?q) 2-bounded

[B-bounded = at most B pending messages in each channel]

Linearizations and bounded MSCs

(p'q) (p'q) (¢'p) (¢'p) (¢'p) (p?q) (p?q) (p?7q) 3-bounded

(plq) (p'q) (a'p) (p?q) (¢'p) (p?q) (¢'p) (P?q) 2-bounded

M is 4B-bounded if at least one linearization is B-bounded
V B-bounded if all linearizations are B-bounded

What about Kleene and Buchi theorems?

What about Kleene and Buchi theorems?

- =~

What about Kleene and Buchi theorems?

Monadic Second-Order logic (MSQO) over MSCs

Q=

Monadic Second-Order logic (MSQO) over MSCs

e = a(x)|p(z) label /process of event x

Monadic Second-Order logic (MSQO) over MSCs

e = a(x)|p(z) label /process of event x

| r—Y Process successor

Monadic Second-Order logic (MSQO) over MSCs

e = a(x)|p(z) label /process of event x
|z —y Process successor
|z <y message relation
p

Monadic Second-Order logic (MSQO) over MSCs

e = a(x)|p(z) label /process of event x
|z —y process successor
|z <y message relation
|z <y happened-before
p

Monadic Second-Order logic (MSQO) over MSCs

e = a(x)|p(z) label /process of event x
|z —y process successor
|z <y message relation
|z <y happened-before

=@ leVe|Ir. o|IX. plzeX

Monadic Second-Order logic (MSQO) over MSCs

e = a(x)|p(z) label /process of event x
|z —y process successor
|z <y message relation
|z <y happened-before

=@ leVe|Ir. o|IX. plzeX

Example: mutual exclusion =(3z. Jy. c(x) Ac(y) A z ||y)

Monadic Second-Order logic (MSQO) over MSCs

e = a(x)|p(z) label /process of event x
|z —y process successor
|z <y message relation
|z <y happened-before

=@ leVe|Ir. o|IX. plzeX

Example: mutual exclusion =(3z. Jy. c(x) Ac(y) A z ||y)

Let’s get back to words...

MSO — Automata
Inductive translation:

Conjunction — Product

Disjunction — Union

Existential quantification — Projection

Negation — Complement

Let’s get back to words...

MSO — Automata What about MSCs?
Inductive translation:

[} ..

e Conjunction — Product v
e Disjunction — Union 4
e Existential quantification — Projection v

Negation — Complement

Let’s get back to words...

MSO — Automata What about MSCs?
Inductive translation:

Conjunction — Product

Disjunction — Union

Existential quantification — Projection

x NN SN

Negation — Complement

Theorem (Bollig, Leucker 2006)
CFMs are not closed under complement.
Thus CFM # MSOI<, <.

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)
Over finite MSCs, CFM = EMSO[<, —] € MSO[<, —].

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)
Over finite MSCs, CFM = EMSO[<, —] € MSO[<, —].

Theorem (Bollig, F., Gastin 2018 & 2021)
CFM = EMSO/[<, <]

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)
Over finite MSCs, CFM = EMSO[<, —] € MSO[<, —].

Theorem (Bollig, F., Gastin 2018 & 2021)
CFM = EMSO/[<, <]

Theorem (Genest, Kuske, Muscholl 2006)
Over existentially bounded MSCs, CFM = MSO|[«, <].

Logical characterization of CFMs

Theorem (Bollig, Leucker 2006)
Over finite MSCs, CFM = EMSO[<, —] € MSO[<, —].

Theorem (Bollig, F., Gastin 2018 & 2021)
CFM = EMSO/[<, <]

Theorem (Genest, Kuske, Muscholl 2006)
Over existentially bounded MSCs, CFM = MSO|[«, <].

Where we are

CFMs

[Bollig,F.,Gastin 2021]
EMSO|«, <]

= EMSO[—, <

when existentially—boundedl[Genest, Kuske, Muscholl 2006]

MSO[<, <]

10

Where we are
S ~\“s

CFMs Regular Expressions?

A
1
1

4
4

[Bollig,F.,Gastin 2021] k
EMSO|«, <]
= EMSO[—, <]

when existentially—boundedl[Genest, Kuske, Muscholl 2006]

MSO[«, <]

10

Concatenation and compositional MSCs

L L K

11

Concatenation and compositional MSCs

p OPTZ
VAV e

ondion

11

Concatenation and compositional MSCs

NB: | 2 is not a compositional MSC (not)
q

11

Concatenation and compositional MSCs

11

Concatenation and compositional MSCs

11

High-level message sequence charts (HMSCs)

(or message sequence graphs (MSGs))

M,
P
gt 1
e —O S O
L R P
gttt .

12

High-level message sequence charts (HMSCs)

(or message sequence graphs (MSGs))

M,
P
b 1
H=—(- = O
B T
o1 i1 .
M
(. D
—1 — 17
/// c - Ms - My - My C L(H)

12

HMSCs are “too” expressive

N
p
N
AN
q/

———

L(H) is not recognisable by a CFM

13

HMSCs are “too” expressive

N
p
N
AN
q/

—

L(H) is not recognisable by a CFM

as many messages between p and q and between p' and ¢ ~ a"b"

13

HMSCs are “too” expressive

N
p
N
AN
q/

—

L(H) is not recognisable by a CFM

as many messages between p and q and between p' and ¢ ~ a"b"

— We need restrictions!

13

Connectivity

e A cMSC M is connected if the undirected graph
(events(M), < U <) is connected.

e M is weakly connected if it has a connected undirected
communication graph.

14

Connectivity

e A cMSC M is connected if the undirected graph
(events(M), < U <) is connected.

e M is weakly connected if it has a connected undirected

communication graph.

A

qi

e.g., is both connected and weakly connected, while

is weakly connected but not connected.

LS

14

Subclasses of HMSCs

e 7 is (weakly) loop-connected if for all loops in H with
label M --- M, every cMSC in the product
M o---0 M, is connected.

ii5)

Subclasses of HMSCs

e 7 is (weakly) loop-connected if for all loops in H with
label M --- M, every cMSC in the product
M o---0 M, is connected.

e 7 is safe if for all accepting path labeled M ... M, in H,
M o--- o M, contains an MSC (= a cMSC with no
unmatched messages).

ii5)

Subclasses of HMSCs

o His if for all loops in H with
label M --- M, every cMSC in the product
My o---0oM, is connected.

e His if for all accepting path labeled M, ... M, in H,
M, o--- 0o M, contains an MSC (= a cMSC with no
unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)
L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some
CFM.

ii5)

Subclasses of HMSCs

o His if for all loops in H with
label M --- M, every cMSC in the product
My o---0oM, is connected.

e His if for all accepting path labeled M, ... M, in H,
M, o--- 0o M, contains an MSC (= a cMSC with no
unmatched messages).

Theorem (Genest, Kuske, Muscholl 2006)
L is definable by some safe weakly connected HMSC if and

only if it is existentially bounded and recognisable by some
CFM.

What about HMSCs that are connected but not safe?

ii5)

b q pq pq
]
8

L(#) is not 3B-bounded, but is
recognisable by a CFM.

i

8

16

Connected HMSCs — Implementability

Theorem (Bollig, F., Gastin 2025)
Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent
CFEM).

17

Connected HMSCs — Implementability

Theorem (Bollig, F., Gastin 2025)
Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent
CFEM).

Step 1: show that EMSO-definable languages of CMSs are
closed under

e union
e concatenation

e iteration if all cMSCs in the language are connected.

17

Connected HMSCs — Implementability

Theorem (Bollig, F., Gastin 2025)
Every loop-connected HMSC can be translated into an

equivalent EMSO formula (and thus, into an equivalent
CFEM).

Step 1: show that EMSO-definable languages of CMSs are
closed under

e union
e concatenation
e iteration if all cMSCs in the language are connected.

Step 2: Apply standard automata-to-expressions translation
techniques.

17

Satisfiability

Satisfiability: Given an HMSC H, is L(H) # &7

18

Satisfiability

Given an HMSC #, is L(H) # @7

Theorem (Genest, Kuske, Muscholl 2006)
Satisfiability is decidable for safe weakly connected HM-
SCs.

18

Satisfiability

Given an HMSC #, is L(H) # @7

Theorem (Genest, Kuske, Muscholl 2006)
Satisfiability is decidable for safe weakly connected HM-
SCs.

Theorem (Bollig, F., Gastin 2025)

e Emptiness of unrestricted HMSCs is undecidable, even
with a message alphabet of size one.

e With a message alphabet of size at least two, emtpiness
of HMSCs is undecidable even for loop-connected
HMSCs. This is true even with only two processes, or
three processes and flat HSMCs.

18

Undecidability for loop-connected HMSCs

Reduction from Post Correspondance Problem:

f,g: A" — B*
a p a p
a
1. k2
M M
a p ¢ p v

Mf M9
There exists u € A" such that f(u) = g(u) if and only if
(T (5) () (S)" o
acA a€A beB

acA 19

Conclusion

safe weakly loop-connected HSMC if
existentially bounded [GKM'06],
but unrestricted HMSC otherwise

/-\ \
CFMs HMSCs
\ for safe weakly loop-connected
[BFG'21] \\, J_,' HSMCs [GKM'06]

for loop-connected HSMCs [BFG'25]
EMSO|«, <]

>

! when existentially-bounded [GKM'06]
¥

MSO[<, <]

20

Some open questions

¢ Relation between our definition past ones: Is every
safe and weakly loop-connected HMSC equivalent to a

loop-connected HMSC?

21

Some open questions

¢ Relation between our definition past ones: Is every
safe and weakly loop-connected HMSC equivalent to a
loop-connected HMSC?

¢ Refinements of the undecidability results, e.g., does
undecidability holds for loop-connected and flat HMSCs

with two processes?

21

Some open questions

¢ Relation between our definition past ones: Is every
safe and weakly loop-connected HMSC equivalent to a
loop-connected HMSC?

¢ Refinements of the undecidability results, e.g., does
undecidability holds for loop-connected and flat HMSCs
with two processes?

e Is there an interesting subclass of (loop-connected or not)
HMSCs beyond existentially bounded MSCs with
decidable satisfiability/model checking problems?

21

Some open questions

¢ Relation between our definition past ones: Is every
safe and weakly loop-connected HMSC equivalent to a
loop-connected HMSC?

¢ Refinements of the undecidability results, e.g., does
undecidability holds for loop-connected and flat HMSCs
with two processes?

e Is there an interesting subclass of (loop-connected or not)
HMSCs beyond existentially bounded MSCs with
decidable satisfiability/model checking problems?

e What are the CFMs that correspond to loop-connected
HMSCs?

21

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?

e Parameterized communicating automata [Bollig, 2014|

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?

e Parameterized communicating automata [Bollig, 2014|

e Other possible definitions: registers to store process ids,
dynamic process creation, etc.

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?
e Parameterized communicating automata [Bollig, 2014|

e Other possible definitions: registers to store process ids,

dynamic process creation, etc.

e Difficulties

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?
e Parameterized communicating automata [Bollig, 2014|
e Other possible definitions: registers to store process ids,
dynamic process creation, etc.

e Difficulties

e even more undecidable

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?
e Parameterized communicating automata [Bollig, 2014|
e Other possible definitions: registers to store process ids,
dynamic process creation, etc.

e Difficulties

e even more undecidable
e comparisons with logic are more subtle

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?
e Parameterized communicating automata [Bollig, 2014|
e Other possible definitions: registers to store process ids,
dynamic process creation, etc.
e Difficulties

e even more undecidable
e comparisons with logic are more subtle

e Enrich HMSCs with unbounded parallel composition or

similar operators?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?
e Parameterized communicating automata [Bollig, 2014|
e Other possible definitions: registers to store process ids,
dynamic process creation, etc.
e Difficulties

e even more undecidable
e comparisons with logic are more subtle

e Enrich HMSCs with unbounded parallel composition or

similar operators?

22

Parameterized systems

Here the set of processes is fixed. What about parameterized
systems?
e Parameterized communicating automata [Bollig, 2014|
e Other possible definitions: registers to store process ids,
dynamic process creation, etc.
e Difficulties

e even more undecidable
e comparisons with logic are more subtle

e Enrich HMSCs with unbounded parallel composition or
similar operators?

Thoughts?

22

Thank you!

