# **High-Level Message Sequence Charts**

Marie Fortin

IRIF, CNRS, Université Paris Cité

based on joint work with Benedikt Bollig and Paul Gastin

PaVeDyS meeting, May 13, 2025

#### **Regular Languages of Words**



#### **Regular Languages of Words**



What about **concurrent** systems?

#### **Regular Languages of Words**



#### What about communicating automata?



<sup>1</sup>[Brand, Zafiropulo 1983]



Fixed, finite set of processes, e.g.  $\{p, q, r\}$ 

<sup>1</sup>[Brand, Zafiropulo 1983]



**Fixed**, finite set of processes, e.g.  $\{p, q, r\}$ 

<sup>&</sup>lt;sup>1</sup>[Brand, Zafiropulo 1983]



Fixed, finite set of processes, e.g.  $\{p, q, r\}$ 

<sup>&</sup>lt;sup>1</sup>[Brand, Zafiropulo 1983]



**Fixed**, finite set of processes, e.g.  $\{p, q, r\}$ Global acceptance condition

<sup>1</sup>[Brand, Zafiropulo 1983]

The language of a CFM is a set of Message Sequence Charts.



The language of a CFM is a set of Message Sequence Charts.



### Undecidability

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

• (un)decidability vs. expressiveness

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

- (un)decidability vs. expressiveness
- positive results for implementability

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

- (un)decidability vs. expressiveness
- positive results for implementability
- decidable restrictions/sub-approximations: e.g., bounded channels

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

- (un)decidability vs. expressiveness
- positive results for implementability
- decidable restrictions/sub-approximations: e.g., bounded channels

 $\rightarrow$  Most decision problems for CFMs are undecidable: emptiness, reachability, model-checking...

Does it mean CFMs are uninteresting? No!

- (un)decidability vs. expressiveness
- positive results for implementability
- decidable restrictions/sub-approximations: e.g., bounded channels

In this talk: mainly unbounded, sometimes bounded

























(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q) **3-bounded** 

B-bounded = at most B pending messages in each channel



(p!q) (p!q) (q!p) (q!p) (q!p) (q?p) (q?p) (p?q) (p?q) (p?q)**3-bounded**(p!q) (p!q) (q!p) (p?q) (q!p) (p?q) (q!p) (p?q) (q?p) (q?p)**2-bounded**

. . .

B-bounded = at most B pending messages in each channel



 $\begin{array}{l} (p!q) \ (p!q) \ (q!p) \ (q!p) \ (q!p) \ (q?p) \ (q?p) \ (p?q) \ (p?q) \ (p?q) \end{array} \begin{array}{l} \textbf{3-bounded} \\ (p!q) \ (p!q) \ (q!p) \ (p?q) \ (q!p) \ (p?q) \ (q?p) \ (q?p) \end{array} \begin{array}{l} \textbf{3-bounded} \\ \textbf{2-bounded} \end{array}$ 

M is  $\exists B$ -bounded if at least one linearization is B-bounded  $\forall B$ -bounded if all linearizations are B-bounded

#### What about Kleene and Büchi theorems?

#### What about Kleene and Büchi theorems?


#### What about Kleene and Büchi theorems?











$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & & \mbox{label/process of event } x \\ & \mid x \rightarrow y & & \mbox{process successor} \end{array}$$







$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & & \mbox{label/process of event } x \\ & \mid x \rightarrow y & & \mbox{process successor} \\ & \mid x \triangleleft y & & \mbox{message relation} \\ & \mid x \leq y & & \mbox{happened-before} \end{array}$$



$$\begin{array}{lll} \varphi ::= & a(x) \mid p(x) & \mbox{ label/process of event} \\ & \mid x \to y & \mbox{ process successor} \\ & \mid x \lhd y & \mbox{ message relation} \\ & \mid x \le y & \mbox{ happened-before} \\ & \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \ \varphi \mid \exists X. \ \varphi \mid x \in X \end{array}$$



x





**Example:** mutual exclusion  $\neg(\exists x. \exists y. c(x) \land c(y) \land x \parallel y)$ 





**Example:** mutual exclusion  $\neg(\exists x. \exists y. c(x) \land c(y) \land x \parallel y)$  $\neg(x \leq y) \land \neg(y \leq x) \leftarrow \dashv$ 

### Let's get back to words...

#### $MSO \rightarrow Automata$

Inductive translation:

- • •
- $\bullet \ \ {\rm Conjunction} \ \to \ {\rm Product}$
- $\bullet \ \ \mathsf{Disjunction} \to \mathsf{Union}$
- Existential quantification  $\rightarrow$  Projection
- $\bullet \ \ \mathsf{Negation} \to \mathsf{Complement}$

Let's get back to words...

# $$\label{eq:MSO} \begin{split} \textbf{MSO} & \rightarrow \textbf{Automata} \\ \textbf{Inductive translation:} \end{split}$$

- • •
- $\bullet \ \ {\sf Conjunction} \ \to \ {\sf Product}$
- $\bullet \ \ \mathsf{Disjunction} \to \mathsf{Union}$
- Existential quantification  $\rightarrow$  Projection
- $\bullet \ \ \mathsf{Negation} \to \mathsf{Complement}$

#### What about MSCs?

Let's get back to words...

#### $MSO \rightarrow Automata$ Inductive translation:

- • •
- $\bullet \ \ {\rm Conjunction} \ \to \ {\rm Product}$
- $\bullet \ \ \mathsf{Disjunction} \to \mathsf{Union}$
- Existential quantification  $\rightarrow$  Projection
- $\bullet \ \ \text{Negation} \rightarrow \ \text{Complement}$

### Theorem (Bollig, Leucker 2006) CFMs are not closed under complement. Thus CFM $\neq$ MSO[ $\leq$ , $\triangleleft$ ].

#### What about MSCs?

Theorem (Bollig, F., Gastin 2018 & 2021)  $\mathsf{CFM} = \mathsf{EMSO}[\lhd, \leq]$ 

Theorem (Bollig, F., Gastin 2018 & 2021)  $CFM = EMSO[\lhd, \leq]$ 

Theorem (Genest, Kuske, Muscholl 2006) Over existentially bounded MSCs,  $CFM = MSO[\lhd, \leq]$ .

Theorem (Bollig, F., Gastin 2018 & 2021)  $CFM = EMSO[\lhd, \leq]$ 

Theorem (Genest, Kuske, Muscholl 2006) Over existentially bounded MSCs,  $CFM = MSO[\lhd, \leq]$ .



#### Where we are











is not a compositional MSC (not FIFO)





# High-level message sequence charts (HMSCs) (or message sequence graphs (MSGs))



# High-level message sequence charts (HMSCs) (or message sequence graphs (MSGs))



#### HMSCs are "too" expressive



#### $L(\mathcal{H})$ is not recognisable by a CFM

#### HMSCs are "too" expressive



#### $L(\mathcal{H})$ is not recognisable by a CFM

as many messages between p and q and between p' and  $q' \, \approx a^n b^n$ 

#### HMSCs are "too" expressive



 $L(\mathcal{H})$  is not recognisable by a CFM

as many messages between p and q and between p' and  $q' \, \approx a^n b^n$ 

 $\rightarrow$  We need restrictions!

# Connectivity

- A cMSC M is connected if the undirected graph (events( $M), \leq \cup \leq^{-1})$  is connected.
- *M* is weakly connected if it has a connected undirected communication graph.

# Connectivity

- A cMSC M is connected if the undirected graph  $({\rm events}(M), \leq \cup \leq^{-1})$  is connected.
- *M* is weakly connected if it has a connected undirected communication graph.



<sup>*p*</sup> is both connected and weakly connected, while

is weakly connected but not connected.

*H* is (weakly) loop-connected if for all loops in *H* with label *M*<sub>1</sub> · · · *M*<sub>n</sub>, every cMSC in the product *M*<sub>1</sub> ◦ · · · ◦ *M*<sub>n</sub> is connected.

- *H* is (weakly) loop-connected if for all loops in *H* with label *M*<sub>1</sub> · · · *M*<sub>n</sub>, every cMSC in the product *M*<sub>1</sub> · · · *M*<sub>n</sub> is connected.
- *H* is safe if for all accepting path labeled *M*<sub>1</sub>...*M<sub>n</sub>* in *H*, *M*<sub>1</sub> ◦ · · · ◦ *M<sub>n</sub>* contains an MSC (= a cMSC with no unmatched messages).

- *H* is (weakly) loop-connected if for all loops in *H* with label *M*<sub>1</sub> · · · *M*<sub>n</sub>, every cMSC in the product *M*<sub>1</sub> · · · *M*<sub>n</sub> is connected.
- *H* is safe if for all accepting path labeled M<sub>1</sub>...M<sub>n</sub> in *H*, M<sub>1</sub> ◦ · · · ◦ M<sub>n</sub> contains an MSC (= a cMSC with no unmatched messages).

**Theorem (Genest, Kuske, Muscholl 2006)** *L* is definable by some **safe** weakly connected HMSC if and only if it is **existentially bounded** and recognisable by some CFM.

- $\mathcal{H}$  is (weakly) loop-connected if for all loops in  $\mathcal{H}$  with label  $M_1 \cdots M_n$ , every cMSC in the product  $M_1 \circ \cdots \circ M_n$  is connected.
- *H* is safe if for all accepting path labeled M<sub>1</sub>...M<sub>n</sub> in *H*, M<sub>1</sub> ◦ · · · ◦ M<sub>n</sub> contains an MSC (= a cMSC with no unmatched messages).

**Theorem (Genest, Kuske, Muscholl 2006)** *L* is definable by some **safe** weakly connected HMSC if and only if it is **existentially bounded** and recognisable by some CFM.

What about HMSCs that are connected but not safe?

#### Example



 $L(\mathcal{H})$  is not  $\exists B$ -bounded, but is recognisable by a CFM.



#### **Connected HMSCs – Implementability**

**Theorem (Bollig, F., Gastin 2025)** Every **loop-connected HMSC** can be translated into an equivalent **EMSO** formula (and thus, into an equivalent CFM).
# **Connected HMSCs – Implementability**

**Theorem (Bollig, F., Gastin 2025)** Every **loop-connected HMSC** can be translated into an equivalent **EMSO** formula (and thus, into an equivalent CFM).

 $\label{eq:step 1: show that EMSO-definable languages of CMSs are closed under$ 

- union
- concatenation
- iteration if all cMSCs in the language are connected.

# **Connected HMSCs – Implementability**

**Theorem (Bollig, F., Gastin 2025)** Every **loop-connected HMSC** can be translated into an equivalent **EMSO** formula (and thus, into an equivalent CFM).

**Step 1:** show that EMSO-definable languages of CMSs are closed under

- union
- concatenation
- iteration if all cMSCs in the language are connected.

**Step 2:** Apply standard automata-to-expressions translation techniques.

## Satisfiability

#### Satisfiability: Given an HMSC $\mathcal{H}$ , is $L(\mathcal{H}) \neq \emptyset$ ?

# Satisfiability

#### Satisfiability: Given an HMSC $\mathcal{H}$ , is $L(\mathcal{H}) \neq \emptyset$ ?

**Theorem (Genest, Kuske, Muscholl 2006)** Satisfiability is **decidable** for **safe weakly connected** HM-SCs.

# Satisfiability

#### Satisfiability: Given an HMSC $\mathcal{H}$ , is $L(\mathcal{H}) \neq \emptyset$ ?

**Theorem (Genest, Kuske, Muscholl 2006)** Satisfiability is **decidable** for **safe weakly connected** HM-SCs.

#### Theorem (Bollig, F., Gastin 2025)

- Emptiness of unrestricted HMSCs is undecidable, even with a message alphabet of size one.
- With a message alphabet of size at least two, emtpiness of HMSCs is undecidable even for loop-connected HMSCs. This is true even with only two processes, or three processes and flat HSMCs.

## Undecidability for loop-connected HMSCs



There exists  $u \in A^+$  such that f(u) = g(u) if and only if

$$\left(\sum_{a\in A} M_a^!\right)^+ \cdot \left(\sum_{a\in A} M_a^f\right)^+ \cdot \left(\sum_{a\in A} M_a^g\right)^+ \cdot \left(\sum_{b\in B} M_b^?\right)^+ \neq \emptyset$$

# Conclusion



• Relation between our definition past ones: Is every safe and weakly loop-connected HMSC equivalent to a loop-connected HMSC?

- Relation between our definition past ones: Is every safe and weakly loop-connected HMSC equivalent to a loop-connected HMSC?
- Refinements of the undecidability results, e.g., does undecidability holds for loop-connected and flat HMSCs with two processes?

- Relation between our definition past ones: Is every safe and weakly loop-connected HMSC equivalent to a loop-connected HMSC?
- Refinements of the undecidability results, e.g., does undecidability holds for loop-connected and flat HMSCs with two processes?
- Is there an interesting subclass of (loop-connected or not)
  HMSCs beyond existentially bounded MSCs with decidable satisfiability/model checking problems?

- Relation between our definition past ones: Is every safe and weakly loop-connected HMSC equivalent to a loop-connected HMSC?
- Refinements of the undecidability results, e.g., does undecidability holds for loop-connected and flat HMSCs with two processes?
- Is there an interesting subclass of (loop-connected or not)
  HMSCs beyond existentially bounded MSCs with decidable satisfiability/model checking problems?
- What are the **CFMs** that correspond to loop-connected HMSCs?

• Parameterized communicating automata [Bollig, 2014]

- Parameterized communicating automata [Bollig, 2014]
- Other possible definitions: registers to store process ids, dynamic process creation, etc.

- Parameterized communicating automata [Bollig, 2014]
- Other possible definitions: registers to store process ids, dynamic process creation, etc.
- Difficulties

- Parameterized communicating automata [Bollig, 2014]
- Other possible definitions: registers to store process ids, dynamic process creation, etc.
- Difficulties
  - even more undecidable

- Parameterized communicating automata [Bollig, 2014]
- Other possible definitions: registers to store process ids, dynamic process creation, etc.
- Difficulties
  - even more undecidable
  - comparisons with logic are more subtle

- Parameterized communicating automata [Bollig, 2014]
- Other possible definitions: registers to store process ids, dynamic process creation, etc.
- Difficulties
  - even more undecidable
  - comparisons with logic are more subtle
- Enrich HMSCs with unbounded parallel composition or similar operators?

- Parameterized communicating automata [Bollig, 2014]
- Other possible definitions: registers to store process ids, dynamic process creation, etc.
- Difficulties
  - even more undecidable
  - comparisons with logic are more subtle
- Enrich HMSCs with unbounded parallel composition or similar operators?

- Parameterized communicating automata [Bollig, 2014]
- Other possible definitions: registers to store process ids, dynamic process creation, etc.
- Difficulties
  - even more undecidable
  - comparisons with logic are more subtle
- Enrich HMSCs with unbounded parallel composition or similar operators?

Thoughts?

# Thank you!