
Partial-order reduction

Igor Walukiewicz

Lower bounds and heuristics

joint work with Frederic Herbreteau, Gerald Point, and Gautham Viswanathan

Partial-order reduction : example

Pr Pa Pn

od ⑧

A

ad .. Hand behel . Ibada

2u

2

V

Partial-order reduction : example

Pr Pa Pn

od ⑧

A

ad .. Hand behel . Ibada

2u

2

V

TLB Shootdown IThread modularity on many levels,
Hoenicke

, Majumdar, Podelski)
1writer 2 readers POPL'77

L POR us Reach

~

Potential applications
· looking at transition systems
· proving correctness

verification of timed or probabilistic systems

TLB Shootdown
2 writers I reader

L POR us Reach

W

Concurrent systems

Concurrent programs
write (x

,
i) await (v

, Il acq(e) welle)

every process is a cyclic

Concurrent systems
ha

,
6
...

3 abstract actions

A process is an acyclic deterministic transition system
Synchronization on common actions

Partial-order reduction

~ -

equivalence relation on sequences of actions
· r

,
(x,5) coly,13) (15) = V

,
1x15) +

,
1x
,
15) colg, 13)

· 26 bu if domba dom 16) =0

TSr is a reduced transition system for TS if
⑧ every full run of TJr is a full ranof TJ
·F full runn of is Jfalcamr of To car

Goal : construct a reduced transition system

⑨

Ch 6

·

L
So

6 a
↓ ~

Partial-order reduction

~ -

equivalence relation on sequences of actions
· r

,
(x,5) coly,13) (15) = V

,
1x15) +

,
1x
,
15) colg, 13)

· 26 bu if domba dom 16) =0

TSr is a reduced transition system for TS if
⑧ every full run of TJr is a full ranof TJ
·F full runn of is Jfalcamr of To car

Goal : construct a reduced transition system

Trace optimality : For has the least numberof fullpaths.

State optimality : To has the least number ofstates.

Partial-order reduction : example

Pr Pa Pn

od ⑧

A

ad .. Hand behel . Ibada

2u

2

V

Plan

1
.
POR is NP-hand

2. An idealized POR algorithm with IFS oracle

3. A heuristic for IFS oracle + implementation

POR is NP-hard

minTS(P) : minimal size of a reduced is for 5

An excellent POR algorithm : constructs TS for P

of size < g (minTS(PI)
in time +(19) + minTJ(PI)

Thm : If PANO then there is no excellent POR algorithm
even for programs using only write and awaitoperations.

POR is NP-hard

minTS(P) : minimal size of a reduced is for 5

An excellent POR algorithm : constructs TS for P

of size < g (minTS(PI)
in time +(19) + minTJ(PI)

Thm : If PANO then there is no excellent POR algorithm
even for programs using only write and awaitoperations.

Proof: Use 3-JAT. For a construct Su s
.
t
.

·U not SAT = minTS(Su) < 61ul
· eSAT => MinTS(Su)) # of sat valuationsof y

Consider ↑ = - n (2, v2a) n .. /zzm-r[2m)

Run hypothetical Aly on Sp for + 16141) time.

To & not SAT then Alg stops producing a TS for S4
If a SAT then Alg cannot stop as the smallest Is has 2-r(6141) states.

A

How to construct Se

: If I not SAT then all runsof Se start with e.
IProof : Otherwise 6 I should appear before.

For this we need a sat valuation of a El

How to construct Se

: If I not SAT then all runsof Se start with e.
IProof : Otherwise 6 I should appear before.

For this we need a sat valuation of a El

& If e not SAT Then the following is a good Is for Se

Every ran starting from e is equivalent to a run of this form

How to construct Se

: If I not SAT then all runsof Se start with e.
IProof : Otherwise 6 I should appear before.

For this we need a sat valuation of a El

& If e not SAT Then the following is a good Is for Se

Every ran starting from e is equivalent to a run of this form

13 If a SAT then there is a run starting from I for every valuation sat e.

Plan

1
.
POR is NP-hand

2. An idealized POR algorithm with IFS oracle

3. A heuristic for IFS oracle + implementation

First Jets

Goal : construct a reduced transition system

first (a) = 46 : Fr briny

First (s) = < firstfal : n a maximal run from sy

firstlab) = ha , by Firstlso) = ((
,
6) 32

, 611

&et Bisconnectins if BeF #0 for every Fe FirstIs).

&rop It is enough to find Ps for everys and explore only B from s.

Rem Source sets are not enough even for trace optimality.
⑨

Ch 6

·

L
So Ec] is not a

6 C source set

! a V

Idealized algorithm, IFS oracle

IFS1s
,
B) includes first set : 7se full ran first (a) = B

⑨

ab

·

L
% has as a 16

6

! a
&

.

Idealized algorithm, IFS oracle

IFS1s
,
B) includes first set : 7se full ran first (a) = B

⑨

ab Fact : This algorithm constructs
·

L
% has as a 16 a trace optimal free

6

! a
Fact : /FSIs, B) test is &

.

NP-hard
.

Plan

1
.
POR is NP-hand

2. An idealized POR algorithm with IFS oracle

3. A heuristic for IFS oracle + implementation

A heuristic for IFS(s, B)

Concurrent programs
write

,
il ready

, Il acquel welle)

every process is a cyclic

Independence rp(XI) [rg(,]) if In 0

Cp(x, i) I wg(X,
i)

IFS(s
,B)-

first (a) E B

U

FaeB Fath a Dba

[p(X, 5) DWg(, 5)
up(X, 1) Dry (x, 0) = initial read

A heuristic for IFS(s, B)

IFS(s
,
B) S first (a) E B

Ep
U

FaeB Fath a Dba

[p(X, 5) DWg(, 5)
up(X, 1) Dry (x, 0) = initial read

We want to compute :

CAIR , APW) = YIP(a) , PWIul) : n a full run from]
↑ first(c) = B

all initial all produced
reads writes

Signatures
Sig (n) = (IR ,

NR
,
PW)

T ↑
initial reads ↑ produced writes

needed reads

Sig (rply , 0 ap, 1) = (Sw(, 01, 0, (01x, 7)))

Sig (rg(x, 1)wg (x, 2)) = 10 ,
(rIx

, 11), (w(x, 211)

Sig (Up(x,1)plx, 2)) = 10 , (0(, 21) , 10(x, 1)))
For U = Cp(x, 1) Ug(x, 1) Wg (x , 2) Up (x, 21 Sig(u) = (0, 0, 2a(x, 11, 2(x, 213)

There is an operation Siglatp)o Sigluty) = Signal

We will precompute Sigsplsp, 6) for every process p and spts in p

Sigsp(Sp . 6) =) Siglal : spt- a rany

Computing AIR, APW
Sig (n) = (IR ,

NR
,
PW)

T ↑
initial reads ↑ produced write,

needed reads

(AIRBAPWsB) = YIP(a) , PWlal) : n a full run from sy
first(c) ? B

Algorithm : precompute Sigsplsp, 6) for every process p and spts in p
· use these to compute (AIRs

. B ,
APWs

,
pl

B

Ip g
I

↑ 2) W(X
,
1) E APWs

, B
w(X, 1) r(x

, 1)- w(y, 4) 2) w(x, 2) = APWs, B
~ (5

, 2) w(X
,
2)v 3) w(y, 3) E APWs

,
i

w(g,3) w(y, 3) D W(g ,

4)

so /FS(s
,
B) holds

Computing AIR, APW
Sig (n) = (IR ,

NR
,
PW)

T
initial reads ↑ produced write,

needed reads

(AIRBAPWsB) = YIP(a) , PWlal) : n a full run from sy
first(c) ? B

Algorithm : precompute Sigsplsp, 6) for every process p and spts in p
· use these to compute (AIRs

. B ,
APWs

,
pl

B

Ip g
I

↑ 2) W(X
,
1) E APWs

, B
w(X, 1) r(x

, 1)- w(y, 4) 2) w(x, 2) = APWs, B
~ (5

, 2) w(X
,
2)v 3) w(y, 3) E APWs

,
i

w(g,3) w(y, 3) D W(g ,

4)

so /FS(s
,
B) holds

Rem : This is only an approximation
pl

r (X. 2)
v gives the same result

10 (4
, 7)v this time it is wrong

w(g,3)

Our approach

1) Do pre-processing : fully explore each
process

to computesignatures

2) At each state do poly(IP1) work to compute required PIFSIs, B)

3) Do not traverse constructed is more than DFS does

is
grows exponentially out to 1P1 while we can hope to keep pols 11911 small

ITSI/2 poly(1P1) . /TS/

Experiments

X 1000 states seconds

↓ Y ↓ >

on myLaptop : M1
,
16 GB RAM

Conclusions

· POR is computationally difficult, so we need heuristics.

· We do not have a convenient success measure but state optimality.

· Our heuristic is quite satisfactory for variables and locks.

TODO

1) Lower bound for stateless POR
.

21 PIFS for channels instead of variables.

3) Symmetry reduction.

