Self-Adapting Networks

Radu Iosif (CNRS, University of Grenoble, VERIMAG) joint work with Marius Bozga, Lucas Bueri (VERIMAG), Joost-Pieter Katoen, Emma Ahrens (RWTH Aachen) and Florian Zuleger (TU Wien)

Architectures and Reconfiguration

Architectural styles (pipeline, tree, star, clique, etc.)

Architectures and Reconfiguration

Internal reconfiguration (self-adapting networks)

Architectures and Reconfiguration

Internal vs external initiation of architectural changes

self-adapting systems have internal initiation (guards)

Centralized vs distributed management

- centralized (sequential) management: simpler to implement and supported by the majority of dynamic reconfiguration languages
- but more challenging to model and reason about

Internal reconfiguration (self-adapting networks)

reconfiguration program

disconnect(y.out, z.in);

reconfiguration program

disconnect(y.out, z.in);
disconnect(x.out, y.in);

reconfiguration program disconnect(y.out, z.in);
disconnect(x.out, y.in);
delete(y);


```
reconfiguration program disconnect(y.out, z.in);
disconnect(x.out, y.in);
delete(y);
connect(x.out, z.in);
```


reconfiguration program disconnect(x.out, y.in); delete(y); connect(x.out, z.in);

Network Configurations

A configuration is a network with a snapshot of the states of each component

Self-Adapting Networks are Infinite-state Systems

- Transition systems with unbounded number of configurations:
 - new components can be added, yielding increasingly complex reachability graphs

Self-Adapting Networks are Infinite-state Systems

- Transition systems with unbounded number of configurations:
 - new components can be added, yielding increasingly complex reachability graphs
- Two orthogonal types of actions that interleave:
 - reconfiguration actions change the architecture of a system
 - havoc actions are state changes caused by firing interactions

Self-Adapting Networks are Infinite-state Systems

- Transition systems with unbounded number of configurations:
 - new components can be added, yielding increasingly complex reachability graphs
- Two orthogonal types of actions that interleave:
 - reconfiguration actions change the architecture of a system
 - havoc actions are state changes caused by firing interactions
- The correctness proofs combine:
 - reconfiguration rules using local reasoning scale up via compositionality [Ahrens, Bozga, I, Katoen, OOPSLA'22]
 - havoc invariants using regular model checking techniques [Bozga, Bueri, I, CONCUR'22]
 - proving safety of assertions using parametric model checking techniques [Bozga, I, Sifakis, TCS' 23]

emp

the empty network

emp

[x]@q

the empty network

a single node in state q and no interactions

emp the empty network [x]@q a single node in state q and no interactions

 $\langle x_1.p_1...., x_n.p_n \rangle$ a single interaction and no nodes

emp

[x]@q

 $\langle x_1.p_1...., x_n.p_n \rangle$

ф1 * ф2

the empty network

a single node in state q and no interactions

a single interaction and no nodes

union of disjoint networks

emp

[x]@q

 $\langle x_1.p_1..., x_n.p_n \rangle$

ф1 * ф2

the empty network

a single node in state q and no interactions

a single interaction and no nodes

union of disjoint networks

[x]@token * (x.out,y.in) * [y]@hole * (y.out,z.in) * [z]@hole * (z.out, x.in)

emp

[x]@q

 $\langle x_1.p_1...., x_n.p_n \rangle$

 $\Phi_1 * \Phi_2$

 $\mathbf{\phi}_1 \wedge \mathbf{\phi}_2$

Эх.ф

the empty network

a single node in state q and no interactions

a single interaction and no nodes

separating conjunction (union of disjoint networks)

boolean conjunction

existential quantification

<i></i>	
	D ' /\
	$Ring_{h,t}()$
	1 (11 1911,1()

Ring_{h,t}() \leftarrow $\exists y_1 \exists y_2$. Chain_{h,t}(y_1, y_2) * $\langle y_2.out, y_1.in \rangle$


```
\begin{split} & \text{Ring}_{h,t}() \leftarrow \exists y_1 \, \exists y_2 \, . \, \text{Chain}_{h,t}(y_1,\,y_2) \, ^* \, \left\langle y_2.\text{out},\,y_1.\text{in} \right\rangle \\ & \text{Chain}_{h,t}(x,\,y) \leftarrow \exists z \, . \, [x] \text{@token * } \left\langle x.\text{out},\,z.\text{in} \right\rangle \, ^* \, \text{Chain}_{h,t-1}(z,\,y) \\ & \text{Chain}_{h,t}(x,\,y) \leftarrow \exists z \, . \, [x] \text{@hole * } \left\langle x.\text{out},\,z.\text{in} \right\rangle \, ^* \, \text{Chain}_{h-1,t}(z,\,y),\, n-1 \text{ max}(0,n-1) \end{split}
```



```
\begin{aligned} & \text{Ring}_{h,t}() \leftarrow \exists y_1 \, \exists y_2 \, . \, \text{Chain}_{h,t}(y_1,\,y_2) \, \, ^* \, \langle y_2.\text{out},\,y_1.\text{in} \rangle \\ & \text{Chain}_{h,t}(x,\,y) \leftarrow \exists z \, . \, [x] \text{@token } ^* \, \langle x.\text{out},\,z.\text{in} \rangle \, \, ^* \, \text{Chain}_{h,t-1}(z,\,y) \\ & \text{Chain}_{h,t}(x,\,y) \leftarrow \exists z \, . \, [x] \text{@hole } ^* \, \langle x.\text{out},\,z.\text{in} \rangle \, \, ^* \, \text{Chain}_{h-1,t}(z,\,y), \quad n-1 \text{ max}(0,n-1) \\ & \text{Chain}_{0,1}(x,y) \leftarrow [x] \text{@token } ^* \, x=y & \text{Chain}_{1,0}(x,y) \leftarrow [x] \text{@hole } ^* \, x=y \end{aligned}
```

Programmed reconfigurability

- Sequential programming language based on:
 - ightharpoonup primitives: new(x,q), delete(x), connect(x₁.p₁, ..., x_n.p_n), disconnect(x₁.p₁, ..., x_n.p_n)
 - conditional: with $x_1, ..., x_n$: φ do R od, where φ is a CL formula with no predicates
 - ► sequential composition (R_1 ; R_2), iteration (R^*) and nondeterministic choice ($R_1 + R_2$)


```
with x,y,z: \langle x.out,y.in \rangle * [y]@hole * \langle y.out,z.in \rangle do disconnect(x.out,y.in);
```



```
with x,y,z: \(\pi\x.\text{out,y.in}\) * [y]@hole* \(\pi\x.\text{out,z.in}\) do disconnect(x.\text{out,y.in}); disconnect(y.\text{out,z.in});
```



```
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
  disconnect(x.out,y.in);
  disconnect(y.out,z.in);
  delete(y);
```



```
with x,y,z : \langle x.out,y.in \rangle * [y]@hole * \langle y.out,z.in \rangle do
    disconnect(x.out,y.in);
    disconnect(y.out,z.in);
    delete(y);
    connect(x.out,z.in);
od
```

```
X
                                hole
     token
\{ Ring_{2,1}() \}
 with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
   disconnect(x.out,y.in);
   disconnect(y.out,z.in);
   delete(y);
   connect(x.out,z.in);
 od
\{ Ring_{1,1}() \}
```

```
X
                               hole
     token
\{ Ring_{2,1}() \}
 with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
   disconnect(x.out,y.in);
   disconnect(y.out,z.in);
   delete(y);
   connect(x.out,z.in);
 od
                               safe
\{ Ring_{1,1}() \}
```

Local Reasoning

```
  \{ \text{emp} \} \ \text{new}(\mathbf{x}, \mathbf{q}) \ \{ [x]@q \} \\  \{ [x]@q \} \ \text{delete}(\mathbf{x}) \ \{ \text{emp} \} \\  \{ \text{emp} \} \ \text{connect}(\mathbf{x}_1.\mathbf{p}_1, ..., \mathbf{x}_n.\mathbf{p}_n) \ \{ \ \langle x_1.\mathbf{p}_1, ..., x_n.\mathbf{p}_n \rangle \ \} \\  \{ \ \langle x_1.\mathbf{p}_1, ..., x_n.\mathbf{p}_n \rangle \ \} \ \text{disconnect}(\mathbf{x}_1.\mathbf{p}_1, ..., \mathbf{x}_n.\mathbf{p}_n) \ \{ \text{emp} \}
```

A local specification only mentions those resources that are necessary to avoid faulting

Local Reasoning

```
 \{emp\} \ new(x,q) \ \{[x]@q\} \\ \{[x]@q\} \ delete(x) \ \{emp\} \\ \{emp\} \ connect(x_1.p_1,...,x_n.p_n) \ \{\ \langle x_1.p_1 \ ..., \ x_n.p_n \rangle \ \} \\ \{\ \langle x_1.p_1 \ ..., \ x_n.p_n \rangle \ \} \ disconnect(x_1.p_1,...,x_n.p_n) \ \{emp\} \\ \{\ \langle x_1.p_1 \ ..., \ x_n.p_n \rangle \ \} \ disconnect(x_1.p_1,...,x_n.p_n) \ \{emp\} \\ \{\ \langle x_1.p_1 \ ..., \ x_n.p_n \rangle \ \} \ disconnect(x_1.p_1,...,x_n.p_n) \ \{emp\} \\ \{\ \langle x_1.p_1 \ ..., \ x_n.p_n \rangle \ \} \ disconnect(x_1.p_1,...,x_n.p_n) \ \{emp\} \}
```

$$\{\phi\} \ \mathbb{R} \ \{\Psi\}$$

$$\{\phi \ * \ F\} \ \mathbb{R} \ \{\Psi \ * \ F\}$$
if \ \mathbb{R} is a local program and modifies(\mathbb{R}) \ \cap fv(F) = \varnothing

A local specification only mentions those resources that are necessary to avoid faulting

The frame rule plugs a local specification into a global context

Let Γ be the set of configurations

An action is a function $f: \Gamma \rightarrow pow(\Gamma)^T$, where $S \subseteq T$, $\forall S \in pow(\Gamma)$

Let Γ be the set of configurations

An action is a function $f: \Gamma \rightarrow pow(\Gamma)^T$, where $S \subseteq T$, $\forall S \in pow(\Gamma)$

An action f is local \Leftrightarrow f($\gamma_1 * \gamma_2$) \subseteq f(γ_1) * { γ_2 }

Let Γ be the set of configurations

An action is a function $f: \Gamma \rightarrow pow(\Gamma)^T$, where $S \subseteq T$, $\forall S \in pow(\Gamma)$

An action f is local \Leftrightarrow f($y_1 * y_2$) \subseteq f(y_1) * { y_2 }

- new(x,q), delete(x), $connect(x_1.p_1, ..., x_n.p_n)$, $disconnect(x_1.p_1, ..., x_n.p_n)$
- with $x_1, ..., x_n$: φ do ... od, where φ is a conjunction of equalities
- nondeterministic choices R_1 + R_2 between local programs

Let Γ be the set of configurations

An action is a function $f: \Gamma \rightarrow pow(\Gamma)^T$, where $S \subseteq T$, $\forall S \in pow(\Gamma)$

An action f is local \Leftrightarrow f($y_1 * y_2$) \subseteq f(y_1) * { y_2 }

- new(x,q), delete(x), $connect(x_1.p_1, ..., x_n.p_n)$, $disconnect(x_1.p_1, ..., x_n.p_n)$
- with $x_1, ..., x_n$: φ do ... od, where φ is a conjunction of equalities
- nondeterministic choices R_1 + R_2 between local programs

Non-local programs:

- sequential compositions $R_1; R_2$
- with $x_1, ..., x_n$: φ do ... od, where φ contains node/interaction atoms

Sequential Composition

Sequential Composition

A formula ϕ is havoc invariant \Leftrightarrow for each model γ of ϕ and each state change $\gamma \to \gamma'$ corresponding to firing one or more interactions enabled in γ , γ' is a model of ϕ

Conditional Rule

The premiss introduces both boolean and separating conjunction

Conditional Rule

The premiss introduces both boolean and separating conjunction

The boolean conjunction can be eliminated by solving a frame inference problem:

Find the strongest formula (if one exists) F such that $\phi \models \theta * F$

```
\{ Ring_{2,1}() \}
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
  disconnect(x.out,y.in);
  disconnect(y.out,z.in);
  delete(y);
  connect(x.out,z.in);
od
\{ Ring_{1,1}() \}
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
  disconnect(x.out,y.in);
  disconnect(y.out,z.in);
  delete(y);
  connect(x.out,z.in);
od
\{ Ring_{1,1}() \}
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
  disconnect(y.out,z.in);
  delete(y);
  connect(x.out,z.in);
od
\{ Ring_{1,1}() \}
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
                                                           (x.out,y.in) } disconnect(x.out,y.in) { emp }
{ [y]@hole* \langle y.out,z.in \rangle * Chain<sub>1,1</sub>(z,x) }
  disconnect(y.out,z.in);
  delete(y);
  connect(x.out,z.in);
\{ Ring_{1,1}() \}
```

```
{ Ring<sub>2,1</sub>() }
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle * Chain_{1,1}(z,x)\}
  disconnect(x.out,y.in);
                                                        (x.out,y.in) } disconnect(x.out,y.in) { emp }
\{ [y]@hole * \langle y.out,z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(y.out,z.in);
                                                        ⟨y.out,z.in⟩ } disconnect(y.out,z.in) { emp
  delete(y);
  connect(x.out,z.in);
od
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
                                                         (x.out,y.in) } disconnect(x.out,y.in) { emp }
\{ [y]@hole * \langle y.out,z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(y.out,z.in);
                                                        (y.out,z.in) } disconnect(y.out,z.in) { emp
{ [y]@hole * Chain<sub>1,1</sub>(z,x) }
  delete(y);
  connect(x.out,z.in);
od
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
                                                         (x.out,y.in) } disconnect(x.out,y.in) { emp
\{ [y]@hole * \langle y.out,z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(y.out,z.in);
                                                        (y.out,z.in) } disconnect(y.out,z.in) { emp
{ [y]@hole * Chain<sub>1,1</sub>(z,x) }
  delete(y);
  connect(x.out,z.in);
od
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
                                                         (x.out,y.in) } disconnect(x.out,y.in) { emp }
\{ [y]@hole * \langle y.out,z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(y.out,z.in);
                                                        (y.out,z.in) } disconnect(y.out,z.in) { emp
{ [y]@hole * Chain<sub>1,1</sub>(z,x) }
  delete(y);
                                                        [y] } delete(y) { emp
\{ Chain_{1,1}(z,x) \}
  connect(x.out,z.in);
od
```

```
\{ Ring_{1,1}() \}
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
                                                             (x.out,y.in) } disconnect(x.out,y.in) { emp }
\{ [y]@hole * \langle y.out,z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(y.out,z.in);
                                                             (y.out,z.in) } disconnect(y.out,z.in) { emp
{ [y]@hole * Chain<sub>1,1</sub>(z,x) }
  delete(y);
                                                             [y] } delete(y) { emp
{ Chain<sub>1,1</sub>(z,x) }
                                                           { emp } connect(x.out,z.in) { \langle x.out,z.in \rangle }
  connect(x.out,z.in);
{ Chain<sub>1,1</sub>(z,x) * \langlex.out,z.in\rangle }
od
 \{\exists x \exists z. Chain_{1,1}(z,x) * \langle z.out, x.in \rangle \}
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
{ [y]@hole * \langle y.out,z.in \rangle * Chain<sub>1,1</sub>(z,x) }
   disconnect(y.out,z.in);
{ [y]@hole * Chain<sub>1,1</sub>(z,x) }
  delete(y);
\{ Chain_{1,1}(z,x) \}
  connect(x.out,z.in);
{ Chain<sub>1,1</sub>(z,x) * \langle x.out,z.in \rangle }
od
 \{\exists x \exists z. Chain_{1,1}(z,x) * \langle z.out, x.in \rangle \}
\{ Ring_{1,1}() \}
```

```
\{ Ring_{2,1}() \}
{ Chain<sub>2,1</sub>(x,z) * \langlez.out,x.in\rangle }
with x,y,z:\langle x.out,y.in\rangle * [y]@hole* \langle y.out,z.in\rangle do
\{ \langle x.out, y.in \rangle * [y]@hole* \langle y.out, z.in \rangle * Chain_{1,1}(z,x) \}
  disconnect(x.out,y.in);
{ [y]@hole * \langle y.out,z.in \rangle * Chain<sub>1,1</sub>(z,x) }
  disconnect(y.out,z.in);
{ [y]@hole * Chain<sub>1,1</sub>(z,x) } -
  delete(y);
                                                                                   havoc invariant?
{ Chain<sub>1,1</sub>(z,x) } •
  connect(x.out,z.in);
{ Chain<sub>1,1</sub>(z,x) * \langle x.out,z.in \rangle }
od
 \{\exists x \exists z. Chain_{1,1}(z,x) * \langle z.out, x.in \rangle \}
\{ Ring_{1,1}() \}
```


 (Δ,A) describes Γ

 (Δ',A') describes Γ'

 $\mathcal{A}_{\Delta,A}$ tree automaton recognizing the unfolding trees of Δ for the formula $A(x_1 \dots x_n)$

Checking Havoc Invariance

Configurations are encoded as unfolding trees labeled with CL formulae

Check the entailment A'($x_1 \dots x_n$) |= $\Delta \cup \Delta' A(x_1 \dots x_n)$


```
Root() \leftarrow \exists n \exists \ell \exists r . \langle r.out, \ell.in \rangle * Node(n, \ell, r)
Node(n,\ell,r) \leftarrow \exists n_1 \exists r_1 \exists n_2 \exists \ell_2 . [n] * \langle n.req, n_1.reply, n_2.reply \rangle * \langle r_1.out, \ell_2.in \rangle * Node(n_1,\ell,r_1) * Node(n_2,\ell_2,r)
```

```
(\alpha) \quad Root() \leftarrow \exists n \exists \ell \exists r . \langle r.out, \ell.in \rangle * Node(n, \ell, r)
(\beta) \quad Node(n, \ell, r) \leftarrow \exists n_1 \exists n_2 \exists \ell_2 . [n] * \langle n.req, n_1.reply, n_2.reply \rangle * \langle r_1.out, \ell_2.in \rangle * Node(n_1, \ell, r_1) * Node(n_2, \ell_2, r)
[n^{\dagger}] \quad Node(n^{\dagger}, \ell^{\dagger}, r^{\dagger})
[n^{\dagger}] \quad reply
[n^{\dagger}] \quad reply
[n^{\dagger}] \quad reply
[n^{\dagger}] \quad reply
```

```
(\alpha) \qquad Root() \qquad \leftarrow \exists n \exists \ell \exists r \ . \ \langle r.out, \ell.in \rangle * Node(n, \ell, r) 
(\beta) \qquad Node(n, \ell, r) \qquad \leftarrow \exists n_1 \exists r_1 \exists n_2 \exists \ell_2 \ . \ [n] * \langle n.req, n_1.reply, n_2.reply \rangle * \langle r_1.out, \ell_2.in \rangle * Node(n_1, \ell, r_1) * Node(n_2, \ell_2, r)
```



```
Root() \leftarrow \exists n \exists \ell \exists r . \langle r.out, \ell.in \rangle * Node(n, \ell, r)
(\alpha)
           Node(n,\ell,r) \leftarrow \exists n_1 \exists r_1 \exists n_2 \exists \ell_2 \ . \ [n] * \langle n.req, n_1.reply, n_2.reply \rangle * \langle r_1.out, \ell_2.in \rangle * Node(n_1,\ell,r_1) * Node(n_2,\ell_2,r)
           Node(n,\ell,r) \leftarrow [n]@q_0*n = \ell*n = r  (\gamma_1) \quad Node(n,\ell,r) \leftarrow [n]@q_1*n = \ell*n = r
                                                                                                                                                                                                  Node(n^{\varepsilon}, \ell^{\varepsilon}, r^{\varepsilon})
                                                                                                                                                                                               Node(n_2^1, \ell_2^1, r_2^1)
                                                                                            Node(n_1^1, \ell_1^1, r_1^1)
                                                                                                       Node(n_2^{11}, \ell_2^{11}, r_1^{\varepsilon})
```

```
(\alpha) \quad Root() \leftarrow \exists n \exists \ell \exists r . \langle r.out, \ell.in \rangle * Node(n, \ell, r)
(\beta) \quad Node(n, \ell, r) \leftarrow \exists n_1 \exists r_1 \exists n_2 \exists \ell_2 . [n] * \langle n.req, n_1.reply, n_2.reply \rangle * \langle r_1.out, \ell_2.in \rangle * Node(n_1, \ell, r_1) * Node(n_2, \ell_2, r)
(\gamma_0) \quad Node(n, \ell, r) \leftarrow [n] @ q_0 * n = \ell * n = r
(\gamma_1) \quad Node(n, \ell, r) \leftarrow [n] @ q_1 * n = \ell * n = r
\exists n \exists \ell \exists r . \langle r.out, \ell.inp \rangle * \widetilde{z}_1^{(1)} = n * \widetilde{z}_2^{(1)} = \ell * \widetilde{z}_3^{(1)} = r
\exists n \exists \ell \exists r . \langle r.out, \ell.inp \rangle * \widetilde{z}_1^{(1)} = n * \widetilde{z}_2^{(1)} = \ell * \widetilde{z}_3^{(1)} = r
\exists n \exists r_1 \exists n_2 \exists \ell_2 . [\widetilde{x}_1] * \langle \widetilde{x}_1.req, n_1.reply, n_2.reply \rangle * \langle r_1.out, \ell_2.in \rangle
\widetilde{z}_1^{(1)} = n_1 * \widetilde{z}_2^{(1)} = \widetilde{z}_2 * \widetilde{z}_3^{(1)} = r_1 * \widetilde{z}_1^{(2)} = n_2 * \widetilde{z}_2^{(2)} = \ell_2 * \widetilde{z}_3^{(2)} = \widetilde{x}_3
\exists n_1 \exists r_1 \exists n_2 \exists \ell_2 . [\widetilde{x}_1] * \langle \widetilde{x}_1.req, n_1.reply, n_2.reply \rangle * \langle r_1.out, \ell_2.in \rangle
\widetilde{z}_1^{(1)} = n_1 * \widetilde{z}_2^{(1)} = \widetilde{z}_2 * \widetilde{z}_3^{(1)} = r_1 * \widetilde{z}_1^{(2)} = n_2 * \widetilde{z}_2^{(2)} = \ell_2 * \widetilde{z}_3^{(2)} = \widetilde{x}_3
\widetilde{z}_1^{(1)} = n_1 * \widetilde{z}_2^{(1)} = \widetilde{z}_2 * \widetilde{z}_3^{(1)} = r_1 * \widetilde{z}_1^{(2)} = n_2 * \widetilde{z}_2^{(2)} = \ell_2 * \widetilde{z}_3^{(2)} = \widetilde{z}_3
```

 β $[\widetilde{x}_1]@q_1 \qquad [\widetilde{x}_1]@q_0 \qquad [\widetilde{x}_1]$

Havoc Action as Tree Transductions

- ► Non-deterministically choses which interaction <x1.p1 ... xn.pn> is triggered
- Tracks each variable xi to the atom [x]@q that instantiates it (creates the respective node)
- Change the states of these nodes according to the transitions of the behavior (state machine)

Havoc Action as Tree Transductions

- ► Non-deterministically choses which interaction <x1.p1 ... xn.pn> is triggered
- Tracks each variable x_i to the atom [x]@q that instantiates it (creates the respective node)
- Change the states of these nodes according to the transitions of the behavior (state machine)

End of Part I

A simplified model of dynamic reconfigurable systems

- components with finite-state behavior and interactions of finite arity
- a sequential programming language for describing reconfiguration

A resource logic for describing possibly infinite sets of configurations

inductively defined predicates

A proof system for reconfiguration programs

- buses local reasoning to a maximum extent
- generates external proof obligations (entailments)

Entailment Checking Between Inductive Sets of Configurations

Key to mechanising proof generation for reconfiguration programs

- checking havoc invariance requires entailment checking
- entailments is needed when applying the standard consequence rule of Hoare logic
- solving frame inference (conditional rule) uses similar techniques

Entailment Checking Between Inductive Sets of Configurations

Key to mechanising proof generation for reconfiguration programs

- checking havoc invariance requires entailment checking
- entailments is needed when applying the standard consequence rule of Hoare logic
- solving frame inference (conditional rule) uses similar techniques

Entailment of inductively defined predicates is a hard problem [Bozga, Bueri, I IJCAR'22]

- ► satisfiability is decidable (2EXP∩NP-hard)
- ► entailment is undecidable in general and decidable under certain restrictions (4EXP∩2EXP-hard)
- we currently try to understand what are the weakest such restrictions

Relational Structures

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

Relational Structures

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

The tree-width is an integer that measures how close a structure (graph) is to a tree

Relational Structures

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

The tree-width is an integer that measures how close a structure (graph) is to a tree

tree-width = 1

tree-width = 2

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure
universe interpretation of symbols from Σ

emp

any structure with empty interpretation

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

emp

 $R(x_1, ..., x_n)$

any structure with empty interpretation

all relations except R empty and R contains the tuple of values x₁, ..., x_n

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

emp

 $R(x_1, ..., x_n)$

Ф1 * Ф2

any structure with empty interpretation

all relations except R empty and R contains the tuple of values x_1, \ldots, x_n

any structure $S_1 \otimes S_2$, such that $S_i \models \varphi_i$, for all i=1,2

- $\bullet (U_1,\sigma_1) \otimes (U_2,\sigma_2) = (U_1 \cup U_2, \sigma_1 \uplus \sigma_2)$
- $\sigma_1 \uplus \sigma_2$ is the point-wise disjoint union of interpretations

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

emp

 $R(x_1, ..., x_n)$

Ф1 * Ф2

any structure with empty interpretation

all relations except R empty and R contains the tuple of values x_1, \ldots, x_n

any structure $S_1 \otimes S_2$, such that $S_i \models \varphi_i$, for all i=1,2

- $\bullet (U_1,\sigma_1) \otimes (U_2,\sigma_2) = (U_1 \cup U_2, \sigma_1 \uplus \sigma_2)$
- $\sigma_1 \uplus \sigma_2$ is the point-wise disjoint union of interpretations

 $R_1(y_1, ..., y_n) * R_1(z_1, ..., z_n)$ implies $y_i \neq z_i$, for at least one i=1, ..., n

(Monadic) Second Order Logic

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

$$R(x_1, ..., x_n)$$

 $\exists x. \Phi(x)$

 $\exists X. \varphi(X)$

 $\neg \phi$, $\phi_1 \land \phi_2$

R contains the tuple of values $x_1, ..., x_n$,

the rest of the structure remains unspecified

quantification over individual elements of U

quantification over relations, i.e., subsets of $U_{\underline{\times}}$... $\underline{\times}$ U

boolean connectives

(Monadic) Second Order Logic

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

$$R(x_1, ..., x_n)$$

R contains the tuple of values $x_1, ..., x_n$,

 $\exists x. \varphi(x)$

the rest of the structure remains unspecified

 $\exists X. \Phi(X)$

quantification over individual elements of U

 $\neg \mathbf{\phi}, \mathbf{\phi}_1 \wedge \mathbf{\phi}_2$

quantification over relations, i.e., subsets of $U \times ... \times U$

boolean connectives

MSO is the fragment of SO where #(X)=1 for all relation variables

(Monadic) Second Order Logic

$$\sum = \{R_1, ..., R_N, c_1, ..., c_M\} \text{ relational signature}$$
 relation symbols constants

$$S = (U, \sigma)$$
 structure universe interpretation of symbols from Σ

$$R(x_1, ..., x_n)$$

R contains the tuple of values $x_1, ..., x_n$,

 $\exists x. \varphi(x)$

the rest of the structure remains unspecified

 $\exists X. \Phi(X)$

quantification over individual elements of U

 $\neg \mathbf{\phi}, \mathbf{\phi}_1 \wedge \mathbf{\phi}_2$

quantification over relations, i.e., subsets of $U_{\underline{x}}$... \underline{x} $U_{\underline{y}}$

boolean connectives

MSO is the fragment of SO where #(X)=1 for all relation variables

MSO is the yardstick of graph description logics:

- Decidable for structures of bounded tree-width [Courcelle'90]
- Each class of structures with a decidable MSO theory has bounded tree-width [Seese'91]

The Big Picture

The Big Picture

A decidable characterization [Bozga, Bueri, I, Zuleger ARXIV 2023a]


```
Is(x,y) \leftarrow \exists z . R(x,z) * Is(z,y)
```

$$ls(x,y) \leftarrow emp * x=y$$

$$ls(x,y) \leftarrow \exists z . R(x,z) * ls(z,y)$$

$$ls(x,y) \leftarrow emp * x=y$$

$$Is(a,b) \Rightarrow \exists z_1 . R(a,z_1) * Is(z_1,b)$$

$$ls(x,y) \leftarrow \exists z . R(x,z) * ls(z,y)$$

 $ls(x,y) \leftarrow emp * x=y$

$$Is(a,b) \Rightarrow \exists z_1 . R(a,z_1) * Is(z_1,b) \Rightarrow \exists z_1 \exists z_2 . R(a,z_1) * R(z_1,z_2) * Is(z_2,b)$$

$$ls(x,y) \leftarrow \exists z . R(x,z) * ls(z,y)$$

 $ls(x,y) \leftarrow emp * x=y$

$$Is(a,b) \Rightarrow \exists z_1 . R(a,z_1) * Is(z_1,b) \Rightarrow \exists z_1 \exists z_2 . R(a,z_1) * R(z_1,z_2) * Is(z_2,b) \Rightarrow ... \Rightarrow \exists z_1 \exists z_2 ... \exists z_n . R(a,z_1) * R(z_1,z_2) * ... * R(z_n,b)$$

$$ls(x,y) \leftarrow \exists z . R(x,z) * ls(z,y)$$

 $ls(x,y) \leftarrow emp * x=y$

$$Is(a,b) \Rightarrow \exists z_1 . R(a,z_1) * Is(z_1,b) \Rightarrow \exists z_1 \exists z_2 . R(a,z_1) * R(z_1,z_2) * Is(z_2,b) \Rightarrow ... \Rightarrow \exists z_1 \exists z_2 ... \exists z_n . R(a,z_1) * R(z_1,z_2) * ... * R(z_n,b)$$

Existentially quantified variables introduced by the unfolding are instantiated by distinct elements

- there exists a uniform bound on the tree-width of canonical models
- the maximal number of variables that occur (free or bound) in an inductive definition

$$ls(x,y) \leftarrow \exists z . R(x,z) * ls(z,y)$$

 $ls(x,y) \leftarrow emp * x=y$

 $Is(a,b) \Rightarrow \exists z_1 . R(a,z_1) * Is(z_1,b) \Rightarrow \exists z_1 \exists z_2 . R(a,z_1) * R(z_1,z_2) * Is(z_2,b) \Rightarrow ... \Rightarrow \exists z_1 \exists z_2 ... \exists z_n . R(a,z_1) * R(z_1,z_2) * ... * R(z_n,b)$

$$ls(x,y) \leftarrow \exists z . R(x,z) * ls(z,y)$$

 $ls(x,y) \leftarrow emp * x=y$

$$Is(a,b) \Rightarrow \exists z_1 . R(a,z_1) * Is(z_1,b) \Rightarrow \exists z_1 \exists z_2 . R(a,z_1) * R(z_1,z_2) * Is(z_2,b) \Rightarrow ... \Rightarrow \exists z_1 \exists z_2 ... \exists z_n . R(a,z_1) * R(z_1,z_2) * ... * R(z_n,b)$$

Each model is obtained from a canonical model by internal fusion

produces unbounded tree-width sets of models

Bounding the Tree-Width

```
ls(x,y) \leftarrow \exists z . D(z) * R(x,z) * ls(z,y)

ls(x,y) \leftarrow emp * x=y
```

Bounding the Tree-Width

$$ls(x,y) \leftarrow \exists z . D(z) * R(x,z) * ls(z,y)$$

 $ls(x,y) \leftarrow emp * x=y$

$$\begin{split} Is(a,b) &\Rightarrow \exists z_1 \; . \; D(z_1) \; ^* \; R(a,z_1) \; ^* \; Is(z_1,b) \\ &\Rightarrow \exists z_1 \; \exists z_2 \; . \; D(z_1) \; ^* \; R(a,z_1) \; ^* \; D(z_2) \; ^* \; R(z_1,z_2) \; ^* \; Is(z_2,b) \\ & \cdots \\ &\Rightarrow \exists z_1 \; \exists z_2 \; ... \; \exists z_n \; . \; D(z_1) \; ^* \; R(a,z_1) \; ^* \; D(z_2) \; ^* \; R(z_1,z_2) \; ^* \; ... \; ^* \; D(z_n) \; ^* \; R(z_n,b) \end{split}$$

Bounding the Tree-Width

$$ls(x,y) \leftarrow \exists z . D(z) * R(x,z) * ls(z,y)$$

 $ls(x,y) \leftarrow emp * x=y$

$$\begin{split} Is(a,b) &\Rightarrow \exists z_1 \; . \; D(z_1) \; ^* \; R(a,z_1) \; ^* \; Is(z_1,b) \\ &\Rightarrow \exists z_1 \; \exists z_2 \; . \; D(z_1) \; ^* \; R(a,z_1) \; ^* \; D(z_2) \; ^* \; R(z_1,z_2) \; ^* \; Is(z_2,b) \\ & \cdots \\ &\Rightarrow \exists z_1 \; \exists z_2 \; ... \; \exists z_n \; . \; D(z_1) \; ^* \; R(a,z_1) \; ^* \; D(z_2) \; ^* \; R(z_1,z_2) \; ^* \; ... \; ^* \; D(z_n) \; ^* \; R(z_n,b) \end{split}$$

The color of an element = the set of unary relation symbols labeling the element

only elements with disjoint colors can be fused

Persistent Variables

```
Is(x,y) \leftarrow \exists z . R(z,y) * R(x,z) * Is(z,y)
Is(x,y) \leftarrow emp * x=y
Is(a,b) \Rightarrow \exists z_1 . R(z_1,b) * R(a,z_1) * Is(z_1,b)
```

⇒ $\exists z_1 \exists z_2 . R(z_1,b) * R(a,z_1) * R(z_2,b) * R(z_1,z_2) * Is(z_2,b)$...

 \Rightarrow $\exists z_1 \exists z_2 ... \exists z_n . R(z_1,b) * R(a,z_1) * R(z_2,b) * R(z_1,z_2) * ... * R(z_n,b) * R(z_n,b)$

The color of an element = the set of relation atoms involving only constants besides the element

persistent variables can be detected by a greatest fixpoint iteration over the set of inductive definitions

A Decidable Condition

Given an SID Δ, the set of Δ-models of a given sentence φ is tree-width unbounded IFF there exist connected structures S₁ and S₂ satisfying the following conditions [Bozga, Bueri, I, Zuleger ARXIV 2023a]:

- 1. for each $k \ge 1$ there exists $n \ge k$, such that n copies of S_1 and S_2 can be embedded in some Δ -model of Φ
- 2. each S_i has at least three occurrences of an element colored C_i , for i=1,2

$$3. C_1 \cap C_2 = \emptyset$$

? L₁ ⊆ L₂

Is the MSO formula $\phi_1 \wedge \neg \phi_2$ satisfiable?

Is the MSO formula $\phi_1 \wedge \neg \phi_2$ satisfiable?

Satisfiability of a MSO formula is decidable over $\{S \mid tree\text{-}width(S) \leq k\}$ [Courcelle'90]

Given a context-free word language L, the problem "L is recognizable?" is undecidable [Greibach'69]

Given a context-free word language L, the problem "L is recognizable?" is undecidable [Greibach'69]

Hyperedge-replacement (HR) grammars with operations of the form (G,u₁,...,u_n) and ||_k

Grammar rules of the form $u \rightarrow v \parallel_k w$ or $u \rightarrow (G, v_1, ... v_n)$

A context-free graph language is a component of the least solution (with rules viewed as set constraints)

Regular Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,u₁,...,u_n) and ||_k

Additional conditions on each (G,u₁,...,u_n) [Courcelle'91]

- 1. G has at least one edge
 - either a single terminal edge with only sources attached,
 - or at least one internal vertex on each edge
- 2. Any two vertices are linked by a terminal and internal path

Regular Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,u₁,...,u_n) and ||_k

Additional conditions on each (G,u₁,...,u_n) [Courcelle'91]

- 1. G has at least one edge
 - either a single terminal edge with only sources attached,
 - or at least one internal vertex on each edge
- 2. Any two vertices are linked by a terminal and internal path

Three types of rules, where U and W are disjoint sets of nonterminals:

- $u \rightarrow u \parallel_k w, u \in U, w \in W$
- ► $u \to w_1 |_{k} ... |_{k} w_n, u \in U, w_1, ... w_n \in W$
- \rightarrow W \rightarrow G(u₁,...,u_n), w \in W, u₁,...,u_n \in U $_{\forall}$ W

Regular Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,u₁,...,u_n) and ||_k

Additional conditions on each (G,u₁,...,u_n) [Courcelle'91]

- 1. G has at least one edge
 - either a single terminal edge with only sources attached,
 - or at least one internal vertex on each edge
- 2. Any two vertices are linked by a terminal and internal path

Three types of rules, where U and W are disjoint sets of nonterminals:

- $u \rightarrow u \parallel_k w, u \in U, w \in W$
- ► $u \to w_1 \|_{k} \dots \|_{k} w_n, u \in U, w_1, \dots w_n \in W$
- \rightarrow W \rightarrow G(u₁,...,u_n), w \in W, u₁,...,u_n \in U $_{\forall}$ W

The context-free sets produced by regular graph grammars are MSO-definable [Courcelle'92]

$$u \to (G,\,v_1,\,...\,v_n)$$

$$P(x_1,\,...x_{\#P}) \leftarrow \exists y_1\,...\,\exists y_m\,.\,\psi \ ^* \ ^*_{i=1..n} \ Q_i(z_{i,1},\,...,\,z_{i,\#Qi})$$

$$\underbrace{\qquad \qquad \qquad \qquad }_{nonterminal\ edges}$$

$$u \to (G,\,v_1,\,...\,v_n)$$

$$P(x_1,\,...x_{\#P}) \leftarrow \exists y_1\,...\,\exists y_m\,.\,\psi \ ^* \ ^*_{i=1..n} \ Q_i(z_{i,1},\,...,\,z_{i,\#Qi})$$

$$\underbrace{\qquad \qquad \qquad \qquad }_{nonterminal\ edges}$$

regular HR operations

If Δ is a regular SID, there exists a regular graph grammar that produces the canonical Δ -models of a given SLR sentence

regular HR operations

tregular inductive definitions

If Δ is a regular SID, there exists a regular graph grammar that produces the canonical Δ -models of a given SLR sentence

Definable Transductions

k layers =

Definable Transductions

If L' \subseteq Struc(\mathbb{R}) is MSO-definable and R is a definable \mathbb{R} - \mathbb{R} transduction then R-1(L') \subseteq Struc(\mathbb{R}) is MSO-definable

MSO-Definable Sets of Models

MSO-Definable Sets of Models

F-1 is a definable transduction, but (F-1)* is (provably) not, in general

transduction scheme that uses quantification over sets of edges

For a regular SID Δ , assuming that the set of Δ -models of a given sentence has bounded tree-width, this set is obtained from the set of canonical Δ -models by applying F^k , for a bounded $k \ge 1$

MSO-Definable Sets of Models

F-1 is a definable transduction, but (F-1)* is (provably) not, in general

transduction scheme that uses quantification over sets of edges

For a regular SID Δ , assuming that the set of Δ -models of a given sentence has bounded tree-width, this set is obtained from the set of canonical Δ -models by applying F^k , for a bounded $k \ge 1$

Conclusions and Future Work

A definition of a large fragment of SLR that describes MSO-definable and tree-width bounded sets of structures

 the idea can be used starting with other MSO-definable HR grammars (e.g., series-parallel graphs)

Conclusions and Future Work

A definition of a large fragment of SLR that describes MSO-definable and tree-width bounded sets of structures

 the idea can be used starting with other MSO-definable HR grammars (e.g., series-parallel graphs)

Future Work

- A grammar-based characterization of HR and (C)MSO-definable sets
- Complexity for entailments between SLR ∩ BTW ∩ CMSO sets