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Internal vs external initiation of architectural changes

> self-adapting systems have internal initiation (guards)

Centralized vs distributed management

> centralized (sequential) management: simpler to
implement and supported by the majority of dynamic
reconfiguration languages

> distributed (parallel) management: efficient and realistic
but more challenging to model and reason about
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reconfiguration
program
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What can possibly go wrong?
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disconnect(y.out, z.in);

reconfiguration disconnect(x.out, y.in);
program delete(y);
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What can possibly go wrong?

Hole Hole Hole

n out n out n out

Token Token Token

disconnect(y.out, z.in);

reconfiguration disconnect(x.out, y.in);
program delete(y);

connect(x.out, z.in);
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What can possibly go wrong?
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q deadlock
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disconnect(y.out, z.in);

reconfiguration disconnect(x.out, y.in);
program delete(y);

connect(x.out, z.in);



http://z.in
http://y.in
http://z.in

Network Configurations

A configuration is a network with a snapshot of the states of each component
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Self-Adapting Networks are
Infinite-state Systems

> Transition systems with unbounded number of configurations:

- new components can be added, yielding increasingly complex reachability graphs

> Two orthogonal types of actions that interleave:
- reconfiguration actions change the architecture of a system

- havoc actions are state changes caused by firing interactions

> The correctness proofs combine:
- reconfiguration rules using local reasoning scale up via compositionality [Ahrens, Bozga, |, Katoen, OOPSLA"22]
- havoc invariants using regular model checking technigques [Bozga, Bueri, |, CONCUR'22]

- proving safety of assertions using parametric model checking techniques [Bozga, |, Sifakis, TCS' 23]
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SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid*, Chen Avin*, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, Zvi Lotker

Abstract—This paper initiates the study of locally self-
adjusting networks: networks whose topology adapts dynamically
and in a decentralized manner, to the communication pattern o.
Our vision can be seen as a distributed generalization of the self-
adjusting datastructures introduced by Sleator and Tarjan [22]:
In contrast to their splay trees which dynamically optimize the
lookup costs from a single node (namely the tree root), we seek
to minimize the routing cost between arbitrary communication
pairs in the network.

toward static metrics, such as the diameter or the length of
the longest route: the self-adjusting paradigm has not spilled
over to distributed networks yet.

We, in this paper, initiate the study of a distributed general-
ization of self-optimizing datastructures. This is a non-trivial
generalization of the classic splay tree concept: While in clas-
sic BSTs, a lookup request always originates from the same

nnde the tree ront dictrilnted datactmetniree and netwarkc

» Network architectures are similar to the datastructures used in programming
~ Used to design efficient routing algorithms that minimize internal traffic in datacenters

~ We aim at proving correctness of self-adapting networks using a Configuration Logic (CL)
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(X1.01 ..., Xn.Pn) a single interaction and no nodes
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A Logic of Configurations (CL)

emp the empty network

| X]@Q a single node in state g and no interactions

(X1.01 ..., Xn.Pn) a single interaction and no nodes

b1 * b separating conjunction (union of disjoint networks)
b1 A bo poolean conjunction

ax . ¢ existential quantification
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Adding inductive definitions

Ringnt() « 3y1 3yz . Chainni(y1, y2) * (yz.0out, y1.in)

Chainni(x, y) < 3z . [x]@token * (x.out, z.in) * Chainnt.1(z, y)

Chainni(x, y) < 3z . [x]@hole * (x.out, z.in) * Chainn.11(z, y), n=1£ max(0,n-1)
Chaing 1(x,y) « [x]@token * x=y Chaini o(x,y) « [x]@hole * x=y




Programmed reconfigurability

» Sequential programming language based on:
» primitives: new(x,q), delete(x), connect(xi.pi, ..., Xn.Pn), disconnect(xi.pi, ..., Xn.Pn)
» conditional: with x1, ..., Xn: ¢ do R od, where ¢ is a CL formula with no predicates

» sequential composition (R1; Rg), iteration (R*) and nondeterministic choice (Ri1 + Rg)
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-

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
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X N Z
-
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An example: token-ring node removal

X Z
-

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);

disconnect(y.out,z.in);
delete(y);
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An example: token-ring node removal

X Z

N

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);
disconnect(y.out,z.in);
delete(y);
connect(x.out,z.in);
od
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An example: token-ring node removal

X Z
N

{ Ring2.1() }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);
disconnect(y.out,z.in);
delete(y);
connect(x.out,z.in);
od

{ Ring1.1() }


http://y.in
http://z.in

An example: token-ring node removal

X Z
N

{ Ringz,1() }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);
disconnect(y.out,z.in);
delete(y);
connect(x.out,z.in);
od

t Ring1,1() | ﬁ safe
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Local Reasoning

{emp} new(x,q) {[x]@q}
{[x]@qg} delete(x) {emp}

{emp} connect(x:1.p1, ..., Xn.Pn) {

Xn.Pn) | disconnect(x:1.pi, ..., Xn.Pn) {€MpP}

A local specification only mentions those
resources that are necessary to avoid faulting



Local Reasoning

femp} new(x,q) {[x]@q} {p] R {V}

i[x]@qg} delete(x) {emp} (b *FI R (W * F)

{lemp} connect(x1.p1, ..., Xn.Pn) {

if R is a local program and
Xn.pn) } disconnect(xi.pi, ..., Xn.Pn) {€MP} modifies(R) n fv(F) = @

A local specification only mentions those The frame rule plugs a local
resources that are necessary to avoid faulting specification into a global context
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Which Reconfiguration
Programs are Local?

Let I be the set of configurations
An action is a function f: [ = pow([), where S C T, vSepow(l)

An action f is local & f(y1* yo) C f(y1) * {¥2]
- new(x,q), delete(x), connect(xi.pi, ..., Xn.Pn), disconnect(xi.pi, ..., Xn.Pn)
- with x1, ..., Xn: ¢ do ... od, where ¢ is a conjunction of equalities

- hondeterministic choices Rj + Rg between local programs

Non-local programs:
- sequential compositions Ri; Re

- with x1, ..., Xn: ¢ do ... od, where ¢ contains node/interaction atoms



Sequential Composition

{®} R (6] {6} Ra (W)
{®} R1; Re (W)



Sequential Composition

w O IS havoc
(b} R1; Re (W) invariant

A formula ¢ Is havoc invariant & for each model y of ¢ and each state change
Y —* Y’ corresponding to firing one or more
Interactions enabled in Y, Y’ Is a model of ¢



Conditional Rule

{p A (B *true)} R {V)
fv(p)n X =@
{p} with x:6 do R od {3ax . V!

The premiss introduces both boolean and separating conjunction



Conditional Rule

6" FI R {V)
fv(p)n X =@
{p} with x:6do R od {3x . V}

The premiss introduces both boolean and separating conjunction
The boolean conjunction can be eliminated by solving a frame inference problem:

Find the strongest formula (if one exists) F such that ¢ |=6 * F



{

RiNg2.1() }

Back to the proof

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

disconnect(x.out,y.in);

disconnect(y.out,z.in);

delete(y);

connect(x.out,z.in);

od

RiNg1,1() |
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{

Back to the proof

RiNg2.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

disconnect(x.out,y.in);
disconnect(y.out,z.in);

delete(y);

connect(x.out,z.in);

od

RiNg1.1() |
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{

Back to the proof

1ingz,1() |

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

{

(x.out,y.in) *[y]@hole* (y.out,z.in) * Chaini 1(z,x) }
disconnect(x.out,y.in);

disconnect(y.out,z.in);
delete(y);

connect(x.out,z.in);

od

1ing1,1() |
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }
disconnect(x.out,y.in); [ (x.out,y.in) }disconnect(x.out,y.in) { emp }
[ [y]@hole* (y.out,z.in) * Chaini1(z,x) }
disconnect(y.out,z.in);

delete(y);
connect(x.out,z.in);

od

t Ring14() §
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); { (x.out,y.in) } disconnect(x.out,y.in) { emp }
[ [y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [ {y.out,z.in) } disconnect(y.out,z.in) { emp }

delete(y);

connect(x.out,z.in);

od

{ Ring1.1() }
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); { (x.out,y.in) } disconnect(x.out,y.in) { emp }
[ [y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [ {y.out,z.in) } disconnect(y.out,z.in) { emp }
[ [y]@hole * Chaini 1(z,X) }

delete(y);

connect(x.out,z.in);

od

{ Ring1,1() }
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); { (x.out,y.in) } disconnect(x.out,y.in) { emp }
[ [y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [ {y.out,z.in) } disconnect(y.out,z.in) { emp }
[ [y]@hole * Chaini 1(z,X) }

delete(y);

connect(x.out,z.in);

od

{ Ring1,1() }
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); [ (x.out,y.in) } disconnect(x.out,y.in) { emp }
[ [y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [ {y.out,z.in) } disconnect(y.out,z.in) { emp }
[ [y]@hole * Chaini 1(z,X) }

delete(y); { ly] } delete(y) { emp |

{ Chainy 1(z,x) }
connect(x.out,z.in);

od

{ Ring1,1() }
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); [ (x.out,y.in) } disconnect(x.out,y.in) { emp }
[ [y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [ {y.out,z.in) } disconnect(y.out,z.in) { emp }
[ [yl@hole * Chain1,1(z,x) }

delete(y); { ly] } delete(y) { emp |
{ Chaim,1(z,x) } . .
connect(x.out,z.in):; [ .emp } connect(x.out,z.in) { {x.out,z.in) }
[ Chainy1(z,x) * {(x.out,z.in) }
od

{ ax3z.Chain1,1(z,x) * (z.out,x.in) }
{ Ring1,1() |
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }
disconnect(x.out,y.in);

[ [y]@hole * (y.out,z.in) * Chain1.1(z,x) }
disconnect(y.out,z.in);

[ [y]@hole * Chaini 1(z,X) }
delete(y);

{ Chainy 1(z,x) }
connect(x.out,z.in);

[ Chainy1(z,x) * {(x.out,z.in) }

od

{ ax3z.Chain1,1(z,x) * (z.out,x.in) }
{ Ring1,1() |
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Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

[ (x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }
disconnect(x.out,y.in);

[ [y]l@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in);

({ [yl@hole * Chains 1(z,x) } \
delete(y); <\

{ Chaini 1(z,x) )} — —————
connect(x.out,z.in);

I Chaini 1(z,x) * {x.out,z.in) }

od

{ ax3z.Chain1,1(z,x) * (z.out,x.in) }

t Ring14() }

havoc iNvariant?
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Checking Havoc Invariance
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of one havoc step
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Checking Havoc Invariance

(ALA) describes [T s > (A',A') describes [
-
" cl ?
Apatree automaton 00 S T (Ann)
recognizing the unfolding trees J tree transducer
of A for the formula A(x1 ... Xn) encoding the effect

of one havoc step

Configurations are encoded as unfolding trees labeled with CL formulae

Check the entailment A'(X1 ... Xn) |=au ar A(X1 ... Xn)



A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,’.in)* Node(n,£,r)

____________________________________________________________________________________________________________________




A Tree with Leaves Linked In a Ring

(o) Root() <« 3n3¢3r. (r.out,’.in)* Node(n,£,r)
(B) Node(n,f,r) < dnyIAry3n3ls . [n] = (n.req,ny.reply,no.reply) = (ry.out,s.in) x Node(ny, £, r) x Node(ng, {2, r)

__________________________________________________________________________________________________________

[7°] Node(nt, (¢, r?)

reply reply




A Tree with Leaves Linked In a Ring

(o) Root() <« dn3¢3r. (r.out,l.in)* Node(n,£,r)
(B) Node(n,f,r) < dnyIAry3n3ls . [n] = (n.req,ny.reply,no.reply) = (ry.out,s.in) x Node(ny, £, r) x Node(ng, {2, r)
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reply reply | ! reply reply
' [




A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,l.in)* Node(n,£,r)
(B) Node(n,4,r) <« 3ny3Ary3ne3ls . [n]* (n.req,ny.reply,no.reply) * (ry.out,>.in) * Node(ny,£,ry) x Node(no,£2,r)




A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,’.in)* Node(n,£,r)
(B) Node(n,f,r) < 3nyIAry3n3ls . [n] = (n.req,ny.reply,no.reply) = (ry.out,s.in) x Node(ny, £, r) x Node(ng, {2, r)
(Yo) Node(n,f,r) < [n|@goxn=~£xn=r (v1) Node(n,l,r) < [n|]@gixn=~¢xn=r

|
(1] Node(n11 .1 (3] Node(n}!, @1 rf) | 12] Node(n12 0G,r 2) [112] Node(n)?, 612 )
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A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,l.in)* Node(n,£,r)
(B) Node(n,l,r) < 3ny3AryAno3ls . [n] = (n.req,ny.reply,no.reply) = (ri.out,’.in) * Node(ny, £, ry) * Node(nz,£2,r)
(Yo) Node(n,l,r) < [n|@goxn=~Fxn=Tr (v1) Node(n,f,r) < [n|]@gixn=4~4xn=r

An3¢3r . (r.out,£.inp) *51(1) = n*}'g) :é*}'§1) =r

Any3ry3Anp 3l . [xq] % (X4.req, ny .reply, ny.reply)  (ry.out, £>.in)
~(2)  ~

Z = k2 =%+ 2V = 1+ 2P = 012 = 0,477 =%
Any3ry3Ane 3l . [Xq] * (X4.req, ny.reply, ny.reply)  (ry.out,£5.in) Any3r3An,3L, . [Xq] * (x4.req, ny.reply, no.reply)  (r,.out, £5.in)
2 =« Z) =%+ ZN =1 2P = 2P = 0,42 =% 2 =2V =342 = 1 xZP = 2P = 0,47 =%

B B

NN NN

[x1]@q; [x1]@qo [X1]@qo [X1]@qo [x1]@qo [X1]@qo [X1]@qo [x1]@qo



Havoc Action as Tree Transductions

* Non-deterministically choses which interaction <x1.p1 ... Xn.pn> is triggered
> Tracks each variable x;to the atom [x]@q that instantiates it (creates the respective node)
» Change the states of these nodes according to the transitions of the behavior (state machine)

ny3r 330, . (X Iny 3 3ny 30, (X ] * (X).req, ny .reply, ny.reply) * (ry .ot

~{1) ~1) ~ ~1) (2) ~{2) ~{2)

~(1) | £2)
< Iy =N %3, =X2%Z3 =l 3y =N2*3, = (2%

A1)
g =Mm*2g



Havoc Action as Tree Transductions

* Non-deterministically choses which interaction <x1.p1 ... Xn.pn> is triggered
> Tracks each variable x;to the atom [x]@q that instantiates it (creates the respective node)
» Change the states of these nodes according to the transitions of the behavior (state machine)

((X,(X) b;:é\é*b::é?

~

|
(BaB) b2:}2*5;:;(/3

(B,B) | b2 =X (B,B) |emp (B,B) |emp (B;B) | b1 =X

(Y1,70) | b2 =X (Yo,Y0) [emp | (Yo,Yo) |emp|  (Yo,Yo) |emp| (Yo,Yo)|emp| (Yo,Yo)|emp| (Yo,Yo)|emp| (Yo,Y1)| b1 =X




End of Part |

A simplified model of dynamic reconfigurable systems
»components with finite-state behavior and interactions of finite arity

>a seqguential programming language for describing reconfiguration

A resource logic for describing possibly infinite sets of configurations

>Inductively defined predicates

A proof system for reconfiguration programs
>uses local reasoning to a maximum extent

> generates external proof obligations (entailments)



Entailment Checking Between
Inductive Sets of Configurations

Key to mechanising proof generation for reconfiguration programs
> checking havoc invariance requires entailment checking
> entailments is needed when applying the standard consequence rule of Hoare logic

> solving frame inference (conditional rule) uses similar techniques



Entailment Checking Between
Inductive Sets of Configurations

Key to mechanising proof generation for reconfiguration programs
> checking havoc invariance requires entailment checking
> entailments is needed when applying the standard consequence rule of Hoare logic

> solving frame inference (conditional rule) uses similar techniques

Entailment of inductively defined predicates is a hard problem [Bozga, Bueri, | IJCAR'22]
» satisfiability is decidable (2EXPnNP-hard)

» entailment is undecidable in general and decidable under certain restrictions (AEXPN2EXP-hard)

> we currently try to understand what are the weakest such restrictions
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The tree-width is an integer that measures how close a structure (graph) is to a tree



Relational Structures

EE — {F%1! sray F%hh O} I

- _J -

_J

SV TV

relation symbols constants

cwv} relational signature

S =

(U, o) structure

—_r s

universe interpretation of symbols from )

The tree-width is an integer that measures how close a structure (graph) is to a tree

U+ U2 U3 Un-1 Un
R R R
tree-width = 1
U+ U2 U3 Un-1 Un
R R R
tree-width = 2

tree-width = 1

m

T D

tree-width = min(n, m)
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Separation Logic of Relations (SLR)

> ={R, ..., Ry, C1, ...., cv} relational signature S = (U, o) structure
. J L _J L .
VT VT universe interpretation of symbols from )

relation symbols constants

emp any structure with empty interpretation
R(x1, ..., Xn) all relations except R empty and R contains the tuple of values x1, ..., Xn
O1 ™ O2 any structure S1® Sy, such that Sik ¢, for all i=1,2

» (U1,01) ® (Us,02) = (U1 U Uz, 01 v O2)
» 01 v 021S the point-wise disjoint union of interpretations

R1(y1, e yn) * R1(Z1, e Zn) implies Vi * Zj, for at least one =1, ..., N
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(Monadic) Second Order Logic

> ={R, ..., Ry, C1, ...., cv} relational signature S = (U, o) structure

. J L _J . .
Vv~ NV universe interpretation of symbols from )

relation symbols constants

R(xy, ..., Xu) R contains the tuple of values x,, ..., x;,
> the rest of the structure remains unspecified

Jx.P(x) quantification over individual elements of U

IX.P(X) quantification over relations, i.e., subsets of ULx xJU
. X

-d, 1P boolean connectives a

MSQO is the fragment of SO where #(X)=1 for all relation variables

MSO is the yardstick of graph description logics:
> Decidable for structures of bounded tree-width [Courcelle'90]}

» Each class of structures with a decidable MSO theory has bounded tree-width [Seese'91]
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A decidable characterization
[Bozga, Bueri, |, Zuleger ARXIV 20233]

SLR
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Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) * Is(z1,b) = 3z1 3z0. R(a,z1) * R(z1,22) * Is(z2,b)

a Z Zo
r—mmm—  ——————C
R R
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Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) " Is(z1,b) = 3z1 3z2. R(a,z1) * R(z1,z2) ™ Is(ze,b) = ... = 3z1 322 . 371 . R(a,z1) " R(z1,22) * ... " R(zn,b)

a Z1 ZZ Zn b
R R R

Existentially quantified variables introduced by the unfolding are instantiated by distinct elements
> there exists a uniform bound on the tree-width of canonical models

>~ the maximal number of variables that occur (free or bound) in an inductive definition
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Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) " Is(z1,b) = 3z1 3z2. R(a,z1) * R(z1,z2) ™ Is(ze,b) = ... = 3z1 322 . 371 . R(a,z1) " R(z1,22) * ... " R(zn,b)

Each model is obtained from a canonical model by internal fusion

> produces unbounded tree-width sets of models
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Bounding the Tree-Width

Is(x,y) < 3z . D(z) * R(x,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . D(z1) * R(a,z1) * Is(z1,b)

= 371 320. D(z1) " R(a,z1) * D(z2) * R(z1,z2) * Is(z2,b)

= 374 372 . 3zn. D(z1) * R(a,z1) * D(z2) * R(z1,z2) * ... * D(zn) ™ R(zn,b)

a Z‘I ZQ Zn b
O————l o r———ll
R o R 5 0 R

The color of an element = the set of unary relation symbols labeling the element

> only elements with disjoint colors can be fused



Persistent Variables

Is(x,y) < 3z . R(z,y) * R(x,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(z1,b) * R(a,z1) * Is(z1,b)
= 371 370. R(z1,b) * R(a,z1) * R(z2,b) * R(z1,z2) * Is(z2,b)

= 3Jz1 3z . 3zn. R(z1,0) * R(a,z1) ™ R(z2,b) * R(z1,z2) * ... * R(zn,b) * R(zn,b)

a Z‘I ZQ Zn b

N

The color of an element = the set of relation atoms involving only constants besides the element

> persistent variables can be detected by a greatest fixpoint iteration over the set of inductive definitions



A Decidable Condition
C =

Co

Given an SID A, the set of A-models of a given sentence ¢ is tree-width unbounded IFF there exist
connected structures S1and Sz satisfying the following conditions [Bozga, Bueri, |, Zuleger ARXIV 2023a]:

1. for each k=1 there exists n=k, such that n copies of S1and Sz can be embedded in some A-model of ¢
2. each Si has at least three occurrences of an element colored C;, fori = 1,2

3.C1inCo=g
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Entaillments in MSO n BTW

Is the MSO formula ¢1 A =2 satisfiable ?

Satisfiability of a MSO formula is decidable over {S | tree-width(S) < k} [Courcelle'90]
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The Big Picture

Given a context-free word language L, the problem “L is recognizable?” is undecidable [Greibach’69]

[

No decidable

characterization SLR

MSO

BTW

We want a subset that is expressive
enough to describe properties of

distributed networks
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Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Grammar rules of the formu = v |[[kw or u = (G, vi, ... Vn)
A context-free graph language is a component of the least solution (with rules viewed as set constraints)
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Additional conditions on each (G,us,...,un) [Courcelle’91]
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- either a single terminal edge with only sources attached,
- or at least one internal vertex on each edge
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Regular Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Additional conditions on each (G,us,...,un) [Courcelle’91]
1. G has at least one edge
- either a single terminal edge with only sources attached,
- or at least one internal vertex on each edge
2. Any two vertices are linked by a terminal and internal path

Three types of rules, where U and W are disjoint sets of nhonterminals:
U = Ulkw, ueU, weW

U = W1 |lk... ||k wn, ueU, wi, ... wneW

» w — G(ui,...,un), weW, ui,...,une UsW

The context-free sets produced by regular graph grammars are MSO-definable [Courcelle'92]
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(Regular) Grammars vs (Regular) SIDs

u— (G, v1, ... vn) regular HR operations
]
P(X1, ...X#P) < Y1 ... AYm. P * Ki=1.n Qi(zi1, ..., Zi#qi) regular inductive definitions
L J L J ——
SV N :
sources internal vertices nonterminal edges

If A is a regular SID, there exists a regular graph grammar that
produces the canonical A-models of a given SLR sentence

F*
4—
fusion

canonical A-models
MSO-definable if A is regular

A-models
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Definable Transductions

- o_ O
(e,1,1)
d
m --------- > . O
b (e,2,2)
k layers = :
copies of the input structure ' (d,1, ..., k)
d
m o O
b (e,k,K)
R={a,b,c} R'={d,e}

If L' € Struc(R’) is MSO-definable and R is a definable R-R’ transduction then R-1(L") ¢ Struc(R) is MSO-definable
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F* (fusion)
4—

canonical A-models
MSO-definable if A is regular

A-models
(F-1)* (fission)
T

F-1is a definable transduction, but (F-1)* is (provably) not, in general
> transduction scheme that uses quantification over sets of edges

For a regular SID A, assuming that the set of A-models of a given sentence has bounded tree-width,
this set is obtained from the set of canonical A-models by applying Fk, for a bounded k=1



MSO-Definable Sets of Models

Fk (k-fusion)
4—

canonical A-models
MSO-definable if A is regular

A-models

MSO-definable (F-)k (k-fission)

T
definable

transduction

F-1is a definable transduction, but (F-1)* is (provably) not, in general
> transduction scheme that uses quantification over sets of edges

For a regular SID A, assuming that the set of A-models of a given sentence has bounded tree-width,
this set is obtained from the set of canonical A-models by applying Fk, for a bounded k=1
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MSO

A fragment defined as the inverse
image of an MSO-definable set

under a definable transduction
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> the idea can be used starting with other MSO-definable HR grammars
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Conclusions and Future Work

A definition of a large fragment of SLR that describes MSO-definable and
tree-width bounded sets of structures

> the idea can be used starting with other MSO-definable HR grammars
(e.g., series-parallel graphs)

Future Work

> A grammar-based characterization of HR and (C)MSO-definable sets
» Complexity for entailments between SLR n BTW n CMSO sets



