Self-Adapting Networks

Radu losif (CNRS, University of Grenoble, VERIMAG)
joint work with Marius Bozga, Lucas Bueri (VERIMAG),
Joost-Pieter Katoen, Emma Ahrens (RWTH Aachen) and
Florian Zuleger (TU Wien)

Architectures and Reconfiguration

Architectural styles
(pipeline, tree, star, cligue, etc.)

Architectures and Reconfiguration

Internal reconfiguration
(self-adapting networks)

Architectures and Reconfiguration

database server

T
T

[

Internal reconfiguration
(self-adapting networks)

;>C|/;>g database connection

managers managers

Internal vs external initiation of architectural changes

> self-adapting systems have internal initiation (guards)

Centralized vs distributed management

> centralized (sequential) management: simpler to
implement and supported by the majority of dynamic
reconfiguration languages

> distributed (parallel) management: efficient and realistic
but more challenging to model and reason about

What can possibly go wrong?

Hole Hole Hole Hole
—@ @ ® ® @ - o o
n out In out In out n out
Token Token Token Token
X Z

y

What can possibly go wrong?

Hole Hole Hole Hole
—@ @ ® ® @ - o o
n out In out In out n out
Token Token Token Token
X Z

y

What can possibly go wrong?

Hole Hole Hole Hole

—@ @ ® ? ® @ - o @
n out In out In out n out

Token Token Token Token

X y Z

disconnect(y.out, z.in);

reconfiguration
program

http://z.in

What can possibly go wrong?

Hole Hole Hole Hole

—@ o ® ? L o ® ®
out |

n out In n out n out

Token Token Token Token

disconnect(y.out, z.in);

reconfiguration disconnect(x.out, y.in);
program

http://y.in

What can possibly go wrong?

Hole Hole Hole

n out n out n out

Token Token Token

disconnect(y.out, z.in);

reconfiguration disconnect(x.out, y.in);
program delete(y);

http://z.in
http://y.in

What can possibly go wrong?

Hole Hole Hole

n out n out n out

Token Token Token

disconnect(y.out, z.in);

reconfiguration disconnect(x.out, y.in);
program delete(y);

connect(x.out, z.in);

http://z.in
http://y.in
http://z.in

What can possibly go wrong?

Hole Hole Hole

—@ @ o @ - o @
n out n out n out

Token Token Token

q deadlock

X Z

disconnect(y.out, z.in);

reconfiguration disconnect(x.out, y.in);
program delete(y);

connect(x.out, z.in);

http://z.in
http://y.in
http://z.in

Network Configurations

A configuration is a network with a snapshot of the states of each component

Havoc vs Reconfiguration Actions

Havoc vs Reconfiguration Actions

Havoc vs Reconfiguration Actions

Havoc vs Reconfiguration Actions

Havoc vs Reconfiguration Actions

http://y.in

Havoc vs Reconfiguration Actions

http://y.in

Havoc vs Reconfiguration Actions

http://y.in

Havoc vs Reconfiguration Actions

http://y.in
http://z.in

Havoc vs Reconfiguration Actions

http://y.in
http://z.in

Havoc vs Reconfiguration Actions

http://y.in
http://z.in

Self-Adapting Networks are
Infinite-state Systems

> Transition systems with unbounded number of configurations:

- new components can be added, yielding increasingly complex reachability graphs

Self-Adapting Networks are
Infinite-state Systems

> Transition systems with unbounded number of configurations:

- new components can be added, yielding increasingly complex reachability graphs

> Two orthogonal types of actions that interleave:
- reconfiguration actions change the architecture of a system

- havoc actions are state changes caused by firing interactions

Self-Adapting Networks are
Infinite-state Systems

> Transition systems with unbounded number of configurations:

- new components can be added, yielding increasingly complex reachability graphs

> Two orthogonal types of actions that interleave:
- reconfiguration actions change the architecture of a system

- havoc actions are state changes caused by firing interactions

> The correctness proofs combine:
- reconfiguration rules using local reasoning scale up via compositionality [Ahrens, Bozga, |, Katoen, OOPSLA"22]
- havoc invariants using regular model checking technigques [Bozga, Bueri, |, CONCUR'22]

- proving safety of assertions using parametric model checking techniques [Bozga, |, Sifakis, TCS' 23]

A Logic of Configurations (CL)

emp the empty network

A Logic of Configurations (CL)

emp the empty network
| X]@Q a single node in state g and no interactions

A Logic of Configurations (CL)

emp the empty network
| X]@Q a single node in state g and no interactions

(X1.01 ..., Xn.Pn) a single interaction and no nodes

A Logic of Configurations (CL)

emp the empty network
| X]@Q a single node in state g and no interactions
(X1.01 ..., Xn.Pn) a single interaction and no nodes

b1 * Py union of disjoint networks

A Logic of Configurations (CL)

emp the empty network

| X]@Q a single node in state g and no interactions
(X1.01 ..., Xn.Pn) a single interaction and no nodes

b1 * by union of disjoint networks

n [
out out
l'n |
X y Z

[x]@token * (x.out,y.in) * [y]@hole * {y.out,z.in) * [z]@hole * (z.out, x.in)

A Logic of Configurations (CL)

emp the empty network

| X]@Q a single node in state g and no interactions

(X1.01 ..., Xn.Pn) a single interaction and no nodes

b1 * b separating conjunction (union of disjoint networks)
b1 A bo poolean conjunction

ax . ¢ existential quantification

Adding inductive definitions

Adding inductive definitions

Ringnt() « 3y1 3yz . Chainni(y1, y2) * (yz.0out, y1.in)

Adding inductive definitions

Ringnt() « 3y1 3yz . Chainni(y1, y2) * (yz.0out, y1.in)
Chainni(x, y) « 3z . [x]@token * (x.out, z.in) * Chainni.1(z, y)
Chainni(x, y) < 3z . [x]@hole * (x.out, z.in) * Chainn.14(z, y), n=1£ max(0,n-1)

Adding inductive definitions

Ringnt() « 3y1 3yz . Chainni(y1, y2) * (yz.0out, y1.in)

Chainni(x, y) < 3z . [x]@token * (x.out, z.in) * Chainnt.1(z, y)

Chainni(x, y) < 3z . [x]@hole * (x.out, z.in) * Chainn.11(z, y), n=1£ max(0,n-1)
Chaing 1(x,y) « [x]@token * x=y Chaini o(x,y) « [x]@hole * x=y

Programmed reconfigurability

» Sequential programming language based on:
» primitives: new(x,q), delete(x), connect(xi.pi, ..., Xn.Pn), disconnect(xi.pi, ..., Xn.Pn)
» conditional: with x1, ..., Xn: ¢ do R od, where ¢ is a CL formula with no predicates

» sequential composition (R1; Rg), iteration (R*) and nondeterministic choice (Ri1 + Rg)

An example: token-ring node removal

N

An example: token-ring node removal

X N Z
-

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);

http://y.in

An example: token-ring node removal

X N Z
-

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);
disconnect(y.out,z.in);

http://y.in
http://z.in

An example: token-ring node removal

X Z
-

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);

disconnect(y.out,z.in);
delete(y);

http://y.in
http://z.in

An example: token-ring node removal

X Z

N

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);
disconnect(y.out,z.in);
delete(y);
connect(x.out,z.in);
od

http://y.in
http://z.in

An example: token-ring node removal

X Z
N

{ Ring2.1() }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);
disconnect(y.out,z.in);
delete(y);
connect(x.out,z.in);
od

{ Ring1.1() }

http://y.in
http://z.in

An example: token-ring node removal

X Z
N

{ Ringz,1() }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
disconnect(x.out,y.in);
disconnect(y.out,z.in);
delete(y);
connect(x.out,z.in);
od

t Ring1,1() | ﬁ safe

http://y.in
http://z.in

Local Reasoning

{emp} new(x,q) {[x]@q}
{[x]@qg} delete(x) {emp}

{emp} connect(x:1.p1, ..., Xn.Pn) {

Xn.Pn) | disconnect(x:1.pi, ..., Xn.Pn) {€MpP}

A local specification only mentions those
resources that are necessary to avoid faulting

Local Reasoning

femp} new(x,q) {[x]@q} {p] R {V}

i[x]@qg} delete(x) {emp} (b *FI R (W * F)

{lemp} connect(x1.p1, ..., Xn.Pn) {

if R is a local program and
Xn.pn) } disconnect(xi.pi, ..., Xn.Pn) {€MP} modifies(R) n fv(F) = @

A local specification only mentions those The frame rule plugs a local
resources that are necessary to avoid faulting specification into a global context

Which Reconfiguration
Programs are Local?

Let I be the set of configurations

An action is a function f: [= pow([), where S C T, vSepow(l)

Which Reconfiguration
Programs are Local?

Let I be the set of configurations
An action is a function f: [= pow([), where S C T, vSepow(l)

An action fis local < f(y1 * ¥2) C f(y1) * {¥2]

Which Reconfiguration
Programs are Local?

Let I be the set of configurations
An action is a function f: [= pow([), where S C T, vSepow(l)

An action f is local & f(y1* yo) C f(y1) * {¥2]
- new(x,q), delete(x), connect(xi.pi, ..., Xn.Pn), disconnect(xi.pi, ..., Xn.Pn)
- with x1, ..., Xn: ¢ do ... od, where ¢ is a conjunction of equalities

- hondeterministic choices Rj + Rg between local programs

Which Reconfiguration
Programs are Local?

Let I be the set of configurations
An action is a function f: [= pow([), where S C T, vSepow(l)

An action f is local & f(y1* yo) C f(y1) * {¥2]
- new(x,q), delete(x), connect(xi.pi, ..., Xn.Pn), disconnect(xi.pi, ..., Xn.Pn)
- with x1, ..., Xn: ¢ do ... od, where ¢ is a conjunction of equalities

- hondeterministic choices Rj + Rg between local programs

Non-local programs:
- sequential compositions Ri; Re

- with x1, ..., Xn: ¢ do ... od, where ¢ contains node/interaction atoms

Sequential Composition

{®} R (6] {6} Ra (W)
{®} R1; Re (W)

Sequential Composition

w O IS havoc
(b} R1; Re (W) invariant

A formula ¢ Is havoc invariant & for each model y of ¢ and each state change
Y —* Y’ corresponding to firing one or more
Interactions enabled in Y, Y’ Is a model of ¢

Conditional Rule

{p A (B *true)} R {V)
fv(p)n X =@
{p} with x:6 do R od {3ax . V!

The premiss introduces both boolean and separating conjunction

Conditional Rule

6" FI R {V)
fv(p)n X =@
{p} with x:6do R od {3x . V}

The premiss introduces both boolean and separating conjunction
The boolean conjunction can be eliminated by solving a frame inference problem:

Find the strongest formula (if one exists) F such that ¢ |=6 * F

{

RiNg2.1() }

Back to the proof

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

disconnect(x.out,y.in);

disconnect(y.out,z.in);

delete(y);

connect(x.out,z.in);

od

RiNg1,1() |

http://y.in
http://z.in
http://z.in

{

Back to the proof

RiNg2.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

disconnect(x.out,y.in);
disconnect(y.out,z.in);

delete(y);

connect(x.out,z.in);

od

RiNg1.1() |

http://y.in
http://z.in
http://z.in

{

Back to the proof

1ingz,1() |

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

{

(x.out,y.in) *[y]@hole* (y.out,z.in) * Chaini 1(z,x) }
disconnect(x.out,y.in);

disconnect(y.out,z.in);
delete(y);

connect(x.out,z.in);

od

1ing1,1() |

http://y.in
http://z.in
http://z.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }
disconnect(x.out,y.in); [(x.out,y.in) }disconnect(x.out,y.in) { emp }
[[y]@hole* (y.out,z.in) * Chaini1(z,x) }
disconnect(y.out,z.in);

delete(y);
connect(x.out,z.in);

od

t Ring14() §

http://y.in
http://z.in
http://z.in
http://y.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); { (x.out,y.in) } disconnect(x.out,y.in) { emp }
[[y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [{y.out,z.in) } disconnect(y.out,z.in) { emp }

delete(y);

connect(x.out,z.in);

od

{ Ring1.1() }

http://y.in
http://z.in
http://z.in
http://y.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); { (x.out,y.in) } disconnect(x.out,y.in) { emp }
[[y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [{y.out,z.in) } disconnect(y.out,z.in) { emp }
[[y]@hole * Chaini 1(z,X) }

delete(y);

connect(x.out,z.in);

od

{ Ring1,1() }

http://y.in
http://z.in
http://z.in
http://y.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); { (x.out,y.in) } disconnect(x.out,y.in) { emp }
[[y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [{y.out,z.in) } disconnect(y.out,z.in) { emp }
[[y]@hole * Chaini 1(z,X) }

delete(y);

connect(x.out,z.in);

od

{ Ring1,1() }

http://y.in
http://z.in
http://z.in
http://y.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); [(x.out,y.in) } disconnect(x.out,y.in) { emp }
[[y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [{y.out,z.in) } disconnect(y.out,z.in) { emp }
[[y]@hole * Chaini 1(z,X) }

delete(y); { ly] } delete(y) { emp |

{ Chainy 1(z,x) }
connect(x.out,z.in);

od

{ Ring1,1() }

http://y.in
http://z.in
http://z.in
http://y.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }
with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do
[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }

disconnect(x.out,y.in); [(x.out,y.in) } disconnect(x.out,y.in) { emp }
[[y]@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in); [{y.out,z.in) } disconnect(y.out,z.in) { emp }
[[yl@hole * Chain1,1(z,x) }

delete(y); { ly] } delete(y) { emp |
{ Chaim,1(z,x) } . .
connect(x.out,z.in):; [.emp } connect(x.out,z.in) { {x.out,z.in) }
[Chainy1(z,x) * {(x.out,z.in) }
od

{ ax3z.Chain1,1(z,x) * (z.out,x.in) }
{ Ring1,1() |

http://y.in
http://z.in
http://z.in
http://y.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }
disconnect(x.out,y.in);

[[y]@hole * (y.out,z.in) * Chain1.1(z,x) }
disconnect(y.out,z.in);

[[y]@hole * Chaini 1(z,X) }
delete(y);

{ Chainy 1(z,x) }
connect(x.out,z.in);

[Chainy1(z,x) * {(x.out,z.in) }

od

{ ax3z.Chain1,1(z,x) * (z.out,x.in) }
{ Ring1,1() |

http://y.in
http://z.in
http://z.in

Back to the proof
{ Ringz.1() }

I Chainz 1(x,z) * (z.out,x.in) }

with x,y,z : (x.out,y.in) * [y]@hole* (y.out,z.in) do

[(x.out,y.in) *[y]@hole* (y.out,z.in) * Chain11(z,x) }
disconnect(x.out,y.in);

[[y]l@hole * (y.out,z.in) * Chain1.1(z,x) }

disconnect(y.out,z.in);

({ [yl@hole * Chains 1(z,x) } \
delete(y); <\

{ Chaini 1(z,x))} — —————
connect(x.out,z.in);

I Chaini 1(z,x) * {x.out,z.in) }

od

{ ax3z.Chain1,1(z,x) * (z.out,x.in) }

t Ring14() }

havoc iNvariant?

http://y.in
http://z.in
http://z.in

Checking Havoc Invariance

>

Checking Havoc Invariance

Checking Havoc Invariance

Checking Havoc Invariance

(ALA) describes [T s > (A',A') describes [

Checking Havoc Invariance

(ALA) describes [T s > (A',A') describes [

Configurations are encoded as unfolding trees labeled with CL formulae

Checking Havoc Invariance

(ALA) describes [T s > (A',A') describes [

’ ['crl?
Anatree automaton

recognizing the unfolding trees
of A for the formula A(x1 ... Xn)

Configurations are encoded as unfolding trees labeled with CL formulae

Checking Havoc Invariance

(AA) describes T g (A',A') describes [
&9
; Mclr?
Anatree automaton .
recognizing the unfolding trees J tree transducer
of A for the formula A(X1 ... Xn) encoding the effect

of one havoc step

Configurations are encoded as unfolding trees labeled with CL formulae

Checking Havoc Invariance

(ALA) describes [T s g (A',A') describes [
&P
; Mcrl ?
Apatree automaton 00 S T (Ann)
recognizing the unfolding trees J tree transducer
of A for the formula A(x1 ... Xn) encoding the effect

of one havoc step

Configurations are encoded as unfolding trees labeled with CL formulae

Checking Havoc Invariance

(ALA) describes [T s > (A',A') describes [
-
" cl ?
Apatree automaton 00 S T (Ann)
recognizing the unfolding trees J tree transducer
of A for the formula A(x1 ... Xn) encoding the effect

of one havoc step

Configurations are encoded as unfolding trees labeled with CL formulae

Check the entailment A'(X1 ... Xn) |=au ar A(X1 ... Xn)

A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,’.in)* Node(n,£,r)

__

A Tree with Leaves Linked In a Ring

(o) Root() <« 3n3¢3r. (r.out,’.in)* Node(n,£,r)
(B) Node(n,f,r) < dnyIAry3n3ls . [n] = (n.req,ny.reply,no.reply) = (ry.out,s.in) x Node(ny, £, r) x Node(ng, {2, r)

__

[7°] Node(nt, (¢, r?)

reply reply

A Tree with Leaves Linked In a Ring

(o) Root() <« dn3¢3r. (r.out,l.in)* Node(n,£,r)
(B) Node(n,f,r) < dnyIAry3n3ls . [n] = (n.req,ny.reply,no.reply) = (ry.out,s.in) x Node(ny, £, r) x Node(ng, {2, r)

! [
reply reply | ! reply reply
' [

A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,l.in)* Node(n,£,r)
(B) Node(n,4,r) <« 3ny3Ary3ne3ls . [n]* (n.req,ny.reply,no.reply) * (ry.out,>.in) * Node(ny,£,ry) x Node(no,£2,r)

A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,’.in)* Node(n,£,r)
(B) Node(n,f,r) < 3nyIAry3n3ls . [n] = (n.req,ny.reply,no.reply) = (ry.out,s.in) x Node(ny, £, r) x Node(ng, {2, r)
(Yo) Node(n,f,r) < [n|@goxn=~£xn=r (v1) Node(n,l,r) < [n|]@gixn=~¢xn=r

|
(1] Node(n11 .1 (3] Node(n}!, @1 rf) | 12] Node(n12 0G,r 2) [112] Node(n)?, 612)
| I ' | '
req | req | | req |
| | | |
n l ’
reply reply : reply reply | 'L rep/y rep/ reply reply :
[I | I T R T

OUt /n out In ,out

______ — e ——— —— — — —— — —— — — —— — — — — — — - — e = e - e = = e e e e e e e - - - - - — ———————__.—__.—_______—l

—4 []eq; bt ["]Cq b—d[ew@qob—c [110a0 Y=k [}]0q0 Bt 2]@670 T [6521@%‘—4 [fE]@% —

A Tree with Leaves Linked In a Ring

(o) Root() < dn3¢3r. (r.out,l.in)* Node(n,£,r)
(B) Node(n,l,r) < 3ny3AryAno3ls . [n] = (n.req,ny.reply,no.reply) = (ri.out,’.in) * Node(ny, £, ry) * Node(nz,£2,r)
(Yo) Node(n,l,r) < [n|@goxn=~Fxn=Tr (v1) Node(n,f,r) < [n|]@gixn=4~4xn=r

An3¢3r . (r.out,£.inp) *51(1) = n*}'g) :é*}'§1) =r

Any3ry3Anp 3l . [xq] % (X4.req, ny .reply, ny.reply) (ry.out, £>.in)
~(2) ~

Z = k2 =%+ 2V = 1+ 2P = 012 = 0,477 =%
Any3ry3Ane 3l . [Xq] * (X4.req, ny.reply, ny.reply) (ry.out,£5.in) Any3r3An,3L, . [Xq] * (x4.req, ny.reply, no.reply) (r,.out, £5.in)
2 =« Z) =%+ ZN =1 2P = 2P = 0,42 =% 2 =2V =342 = 1 xZP = 2P = 0,47 =%

B B

NN NN

[x1]@q; [x1]@qo [X1]@qo [X1]@qo [x1]@qo [X1]@qo [X1]@qo [x1]@qo

Havoc Action as Tree Transductions

* Non-deterministically choses which interaction <x1.p1 ... Xn.pn> is triggered
> Tracks each variable x;to the atom [x]@q that instantiates it (creates the respective node)
» Change the states of these nodes according to the transitions of the behavior (state machine)

ny3r 330, . (X Iny 3 3ny 30, (X] * (X).req, ny .reply, ny.reply) * (ry .ot

~{1) ~1) ~ ~1) (2) ~{2) ~{2)

~(1) | £2)
< Iy =N %3, =X2%Z3 =l 3y =N2*3, = (2%

A1)
g =Mm*2g

Havoc Action as Tree Transductions

* Non-deterministically choses which interaction <x1.p1 ... Xn.pn> is triggered
> Tracks each variable x;to the atom [x]@q that instantiates it (creates the respective node)
» Change the states of these nodes according to the transitions of the behavior (state machine)

((X,(X) b;:é\é*b::é?

~

|
(BaB) b2:}2*5;:;(/3

(B,B) | b2 =X (B,B) |emp (B,B) |emp (B;B) | b1 =X

(Y1,70) | b2 =X (Yo,Y0) [emp | (Yo,Yo) |emp| (Yo,Yo) |emp| (Yo,Yo)|emp| (Yo,Yo)|emp| (Yo,Yo)|emp| (Yo,Y1)| b1 =X

End of Part |

A simplified model of dynamic reconfigurable systems
»components with finite-state behavior and interactions of finite arity

>a seqguential programming language for describing reconfiguration

A resource logic for describing possibly infinite sets of configurations

>Inductively defined predicates

A proof system for reconfiguration programs
>uses local reasoning to a maximum extent

> generates external proof obligations (entailments)

Entailment Checking Between
Inductive Sets of Configurations

Key to mechanising proof generation for reconfiguration programs
> checking havoc invariance requires entailment checking
> entailments is needed when applying the standard consequence rule of Hoare logic

> solving frame inference (conditional rule) uses similar techniques

Entailment Checking Between
Inductive Sets of Configurations

Key to mechanising proof generation for reconfiguration programs
> checking havoc invariance requires entailment checking
> entailments is needed when applying the standard consequence rule of Hoare logic

> solving frame inference (conditional rule) uses similar techniques

Entailment of inductively defined predicates is a hard problem [Bozga, Bueri, | IJCAR'22]
» satisfiability is decidable (2EXPnNP-hard)

» entailment is undecidable in general and decidable under certain restrictions (AEXPN2EXP-hard)

> we currently try to understand what are the weakest such restrictions

Relational Structures

> ={R4, ..., Ry, C1,, cwv} relational signature S = (U, o) structure
. J L _J L .
VT VT universe interpretation of symbols from)

relation symbols constants

Relational Structures

> ={R, ..., Ry, C1,, cv} relational signature S = (U, o) structure

. J L J . .
Vv~ NV universe interpretation of symbols from)

relation symbols constants

The tree-width is an integer that measures how close a structure (graph) is to a tree

Relational Structures

EE — {F%1! sray F%hh O} I

- _J -

_J

SV TV

relation symbols constants

cwv} relational signature

S =

(U, o) structure

—_r s

universe interpretation of symbols from)

The tree-width is an integer that measures how close a structure (graph) is to a tree

U+ U2 U3 Un-1 Un
R R R
tree-width = 1
U+ U2 U3 Un-1 Un
R R R
tree-width = 2

tree-width = 1

m

T D

tree-width = min(n, m)

Separation Logic of Relations (SLR)

> ={R4, ..., Ry, C1,, cwv} relational signature S = (U, o) structure
. J L _J L .
VT VT universe interpretation of symbols from)

relation symbols constants

Separation Logic of Relations (SLR)

> ={R4, ..., Ry, C1,, cwv} relational signature S = (U, o) structure
. J L _J L .
VT VT universe interpretation of symbols from)

relation symbols constants

emp any structure with empty interpretation

Separation Logic of Relations (SLR)

> ={R, ..., Ry, C1,, cv} relational signature S = (U, o) structure
. J L _J L .
VT VT universe interpretation of symbols from)

relation symbols constants

emp any structure with empty interpretation

R(x1, ..., Xn) all relations except R empty and R contains the tuple of values x1, ..., Xn

Separation Logic of Relations (SLR)

> ={R, ..., Ry, C1,, cv} relational signature S = (U, o) structure
. J L _J L .
VT VT universe interpretation of symbols from)

relation symbols constants

emp any structure with empty interpretation
R(x1, ..., Xn) all relations except R empty and R contains the tuple of values x1, ..., Xn
O1 ™ O2 any structure S1® Sy, such that Sik ¢, for all i=1,2

» (U1,01) ® (Us,02) = (U1 U Uz, 01 v O2)
» 01 v 021S the point-wise disjoint union of interpretations

Separation Logic of Relations (SLR)

> ={R, ..., Ry, C1,, cv} relational signature S = (U, o) structure
. J L _J L .
VT VT universe interpretation of symbols from)

relation symbols constants

emp any structure with empty interpretation
R(x1, ..., Xn) all relations except R empty and R contains the tuple of values x1, ..., Xn
O1 ™ O2 any structure S1® Sy, such that Sik ¢, for all i=1,2

» (U1,01) ® (Us,02) = (U1 U Uz, 01 v O2)
» 01 v 021S the point-wise disjoint union of interpretations

R1(y1, e yn) * R1(Z1, e Zn) implies Vi * Zj, for at least one =1, ..., N

(Monadic) Second Order Logic

> ={R, ..., Ry, C1,, cv} relational signature S = (U, o) structure

. J L _J . .
Vv~ NV universe interpretation of symbols from)

relation symbols constants

R(xy, ..., Xu) R contains the tuple of values x,, ..., x;,
> the rest of the structure remains unspecified

Jx.P(x) quantification over individual elements of U

IX.P(X) quantification over relations, i.e., subsets of ULx xJU

#(X)

-, 1A APo boolean connectives

(Monadic) Second Order Logic

> ={R, ..., Ry, C1,, cv} relational signature S = (U, o) structure

. J L _J . .
Vv~ NV universe interpretation of symbols from)

relation symbols constants

R(xy, ..., Xu) R contains the tuple of values x,, ..., x;,
> the rest of the structure remains unspecified

Jx.P(x) quantification over individual elements of U

IX.P(X) quantification over relations, i.e., subsets of ULx xJU
. X

-d, 1P boolean connectives a

MSQO is the fragment of SO where #(X)=1 for all relation variables

(Monadic) Second Order Logic

> ={R, ..., Ry, C1,, cv} relational signature S = (U, o) structure

. J L _J . .
Vv~ NV universe interpretation of symbols from)

relation symbols constants

R(xy, ..., Xu) R contains the tuple of values x,, ..., x;,
> the rest of the structure remains unspecified

Jx.P(x) quantification over individual elements of U

IX.P(X) quantification over relations, i.e., subsets of ULx xJU
. X

-d, 1P boolean connectives a

MSQO is the fragment of SO where #(X)=1 for all relation variables

MSO is the yardstick of graph description logics:
> Decidable for structures of bounded tree-width [Courcelle'90]}

» Each class of structures with a decidable MSO theory has bounded tree-width [Seese'91]

The Big Picture

SLR

BTW

The Big Picture

A decidable characterization
[Bozga, Bueri, |, Zuleger ARXIV 20233]

SLR

Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) * Is(z1,b)

a Z
O——)
R

Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) * Is(z1,b) = 3z1 3z0. R(a,z1) * R(z1,22) * Is(z2,b)

a Z Zo
r—mmm— ——————C
R R

Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) " Is(z1,b) = 3z1 3z2. R(a,z1) * R(z1,z2) ™ Is(ze,b) = ... = 3z1 322 . 371 . R(a,z1) " R(z1,22) * ... " R(zn,b)

a Z1 ZZ Zn b

R R R

Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) " Is(z1,b) = 3z1 3z2. R(a,z1) * R(z1,z2) ™ Is(ze,b) = ... = 3z1 322 . 371 . R(a,z1) " R(z1,22) * ... " R(zn,b)

a Z1 ZZ Zn b
R R R

Existentially quantified variables introduced by the unfolding are instantiated by distinct elements
> there exists a uniform bound on the tree-width of canonical models

>~ the maximal number of variables that occur (free or bound) in an inductive definition

Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) " Is(z1,b) = 3z1 3z2. R(a,z1) * R(z1,z2) ™ Is(ze,b) = ... = 3z1 322 . 371 . R(a,z1) " R(z1,22) * ... " R(zn,b)

Canonical Models

Is(X,y) < 3z . R(X,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(a,z1) " Is(z1,b) = 3z1 3z2. R(a,z1) * R(z1,z2) ™ Is(ze,b) = ... = 3z1 322 . 371 . R(a,z1) " R(z1,22) * ... " R(zn,b)

Each model is obtained from a canonical model by internal fusion

> produces unbounded tree-width sets of models

Bounding the Tree-Width

Is(x,y) < 3z . D(z) * R(x,2) * Is(z,y)

IS(X,Y) — emp * x=y

Bounding the Tree-Width

Is(x,y) < 3z . D(z) * R(x,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . D(z1) * R(a,z1) * Is(z1,b)

= 371 320. D(z1) " R(a,z1) * D(z2) * R(z1,z2) * Is(z2,b)

= 374 372 . 3zn. D(z1) * R(a,z1) * D(z2) * R(z1,z2) * ... * D(zn) ™ R(zn,b)

Bounding the Tree-Width

Is(x,y) < 3z . D(z) * R(x,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . D(z1) * R(a,z1) * Is(z1,b)

= 371 320. D(z1) " R(a,z1) * D(z2) * R(z1,z2) * Is(z2,b)

= 374 372 . 3zn. D(z1) * R(a,z1) * D(z2) * R(z1,z2) * ... * D(zn) ™ R(zn,b)

a Z‘I ZQ Zn b
O————l o r———ll
R o R 5 0 R

The color of an element = the set of unary relation symbols labeling the element

> only elements with disjoint colors can be fused

Persistent Variables

Is(x,y) < 3z . R(z,y) * R(x,2) * Is(z,y)

IS(X,Y) — emp * x=y

Is(a,b) = 3z1 . R(z1,b) * R(a,z1) * Is(z1,b)
= 371 370. R(z1,b) * R(a,z1) * R(z2,b) * R(z1,z2) * Is(z2,b)

= 3Jz1 3z . 3zn. R(z1,0) * R(a,z1) ™ R(z2,b) * R(z1,z2) * ... * R(zn,b) * R(zn,b)

a Z‘I ZQ Zn b

N

The color of an element = the set of relation atoms involving only constants besides the element

> persistent variables can be detected by a greatest fixpoint iteration over the set of inductive definitions

A Decidable Condition
C =

Co

Given an SID A, the set of A-models of a given sentence ¢ is tree-width unbounded IFF there exist
connected structures S1and Sz satisfying the following conditions [Bozga, Bueri, |, Zuleger ARXIV 2023a]:

1. for each k=1 there exists n=k, such that n copies of S1and Sz can be embedded in some A-model of ¢
2. each Si has at least three occurrences of an element colored C;, fori = 1,2

3.C1inCo=g

The Big Picture

SLR

BTW

Ili-

The Big Picture

SLR

MSO

The Big Picture

Decidable entailment

problem SLR

MSO

BTW

Ilil-

Entaillments in MSO n BTW

Entaillments in MSO n BTW

Entaillments in MSO n BTW

Is the MSO formula ¢1 A =2 satisfiable ?

Entaillments in MSO n BTW

Is the MSO formula ¢1 A =2 satisfiable ?

Satisfiability of a MSO formula is decidable over {S | tree-width(S) < k} [Courcelle'90]

Ili-

The Big Picture

SLR

MSO

The Big Picture

No decidable

characterization SLR

MSO

BTW

Ilil-

The Big Picture

Given a context-free word language L, the problem “L is recognizable?” is undecidable [Greibach’69]

No decidable

characterization SLR

MSO

BTW

Iil-

The Big Picture

Given a context-free word language L, the problem “L is recognizable?” is undecidable [Greibach’69]

[

No decidable

characterization SLR

MSO

BTW

We want a subset that is expressive
enough to describe properties of

distributed networks

Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

X

oI E N EEEEEEEEEEEEEER EEEEEEEERN EEEEEEEN,),

A4 A4

AEEEEEEEEEEEEEEEEER E NN EEEEESN lllllllll’

oI EEEEEEEEEEEEEEEEESR EEEEEEEDNR IIII'IIII.
2 4
| |
|

“ ®-
* L

ol o o o o N N o N N oy o o e

L 3
‘

AEEEEEEEEEEEEEEENER E E B EEEEEER IIIIIIIII’

L 4
| |
~—

.
*

Graph Grammars

HR) grammars with operations of the form (G,us,...,un) and ||«

(

Hyperedge-replacement

Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Grammar rules of the formu = v |[[kw or u = (G, vi, ... Vn)
A context-free graph language is a component of the least solution (with rules viewed as set constraints)

Regular Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Additional conditions on each (G,us,...,un) [Courcelle’91]
1. G has at least one edge
- either a single terminal edge with only sources attached,
- or at least one internal vertex on each edge
2. Any two vertices are linked by a terminal and internal path

Regular Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Additional conditions on each (G,us,...,un) [Courcelle’91]
1. G has at least one edge
- either a single terminal edge with only sources attached,
- or at least one internal vertex on each edge
2. Any two vertices are linked by a terminal and internal path

Three types of rules, where U and W are disjoint sets of nhonterminals:
U = Ulkw, ueU, weW

U = W1 |lk... ||k wn, ueU, wi, ... wneW

» w — G(ui,...,un), weW, ui,...,une UsW

Regular Graph Grammars

Hyperedge-replacement (HR) grammars with operations of the form (G,us,...,un) and ||«

Additional conditions on each (G,us,...,un) [Courcelle’91]
1. G has at least one edge
- either a single terminal edge with only sources attached,
- or at least one internal vertex on each edge
2. Any two vertices are linked by a terminal and internal path

Three types of rules, where U and W are disjoint sets of nhonterminals:
U = Ulkw, ueU, weW

U = W1 |lk... ||k wn, ueU, wi, ... wneW

» w — G(ui,...,un), weW, ui,...,une UsW

The context-free sets produced by regular graph grammars are MSO-definable [Courcelle'92]

(Regular) Grammars vs (Regular) SIDs

u— (G, V1, Vn)

P(X1, ...X#P) < 3Y1... AYm. P * Ki=1.n Qi(zi,1, ..., Zi#qi)
L J L) L —— J

(Regular) Grammars vs (Regular) SIDs

u— (G, vi, ... Vn) regular HR operations
]
P(X1, ...X#P) < Y1 ... AYm. P * Ki=1.n Qi(zi1, ..., Zi#qi) regular inductive definitions
L J L J ——

sources internal vertices nonterminal edges

(Regular) Grammars vs (Regular) SIDs

u— (G, vi, ... Vn) regular HR operations
]
P(X1, ...X#P) < Y1 ... AYm. P * Ki=1.n Qi(zi1, ..., Zi#qi) regular inductive definitions
L J L J ——

sources internal vertices nonterminal edges

If A is a regular SID, there exists a regular graph grammar that
produces the canonical A-models of a given SLR sentence

(Regular) Grammars vs (Regular) SIDs

u— (G, v1, ... vn) regular HR operations
]
P(X1, ...X#P) < Y1 ... AYm. P * Ki=1.n Qi(zi1, ..., Zi#qi) regular inductive definitions
L J L J ——
SV N :
sources internal vertices nonterminal edges

If A is a regular SID, there exists a regular graph grammar that
produces the canonical A-models of a given SLR sentence

F*
4—
fusion

canonical A-models
MSO-definable if A is regular

A-models

Definable Transductions

e_©

b
a (e,1,1)
m --------- > . O
b (e,2,2)
k layers = :
copies of the input structure ' (d,1, ..., k)
d
m o O
b (e,k,K)

R={a,b,c} R'={d,e}

Definable Transductions

- o_ O
(e,1,1)
d
m --------- > . O
b (e,2,2)
k layers = :
copies of the input structure ' (d,1, ..., k)
d
m o O
b (e,k,K)
R={a,b,c} R'={d,e}

If L' € Struc(R’) is MSO-definable and R is a definable R-R’ transduction then R-1(L") ¢ Struc(R) is MSO-definable

MSO-Definable Sets of Models

canonical A-models
MSO-definable if A is regular

A-models

MSO-Definable Sets of Models

F* (fusion)
4—

canonical A-models
MSO-definable if A is regular

A-models
(F-1)* (fission)
T

F-1is a definable transduction, but (F-1)* is (provably) not, in general
> transduction scheme that uses quantification over sets of edges

For a regular SID A, assuming that the set of A-models of a given sentence has bounded tree-width,
this set is obtained from the set of canonical A-models by applying Fk, for a bounded k=1

MSO-Definable Sets of Models

Fk (k-fusion)
4—

canonical A-models
MSO-definable if A is regular

A-models

MSO-definable (F-)k (k-fission)

T
definable

transduction

F-1is a definable transduction, but (F-1)* is (provably) not, in general
> transduction scheme that uses quantification over sets of edges

For a regular SID A, assuming that the set of A-models of a given sentence has bounded tree-width,
this set is obtained from the set of canonical A-models by applying Fk, for a bounded k=1

Ilil-

The Big Picture

SLR

MSO

The Big Picture

SLR

MSO

A fragment defined as the inverse
image of an MSO-definable set

under a definable transduction

Conclusions and Future Work

A definition of a large fragment of SLR that describes MSO-definable and
tree-width bounded sets of structures

> the idea can be used starting with other MSO-definable HR grammars
(e.g., series-parallel graphs)

Conclusions and Future Work

A definition of a large fragment of SLR that describes MSO-definable and
tree-width bounded sets of structures

> the idea can be used starting with other MSO-definable HR grammars
(e.g., series-parallel graphs)

Future Work

> A grammar-based characterization of HR and (C)MSO-definable sets
» Complexity for entailments between SLR n BTW n CMSO sets

